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Recent results continue to show the general consensus that ozone-related increases in UV-B radiation
can negatively influence many aquatic species and aquatic ecosystems (e.g., lakes, rivers, marshes,
oceans). Solar UV radiation penetrates to ecological significant depths in aquatic systems and can
affect both marine and freshwater systems from major biomass producers (phytoplankton) to
consumers (e.g., zooplankton, fish, etc.) higher in the food web. Many factors influence the depth of
penetration of radiation into natural waters including dissolved organic compounds whose
concentration and chemical composition are likely to be influenced by future climate and UV radiation
variability. There is also considerable evidence that aquatic species utilize many mechanisms for
photoprotection against excessive radiation. Often, these protective mechanisms pose conflicting
selection pressures on species making UV radiation an additional stressor on the organism. It is at the
ecosystem level where assessments of anthropogenic climate change and UV-related effects are
interrelated and where much recent research has been directed. Several studies suggest that the influence
of UV-B at the ecosystem level may be more pronounced on community and trophic level structure, and
hence on subsequent biogeochemical cycles, than on biomass levels per se.

Introduction

Aquatic ecosystems are key components of the Earth’s biosphere.1

They produce more than 50% of the biomass on our planet (Fig. 1)
and incorporate at least the same amount of atmospheric carbon
dioxide as terrestrial ecosystems (cf. Zepp et al.2). The primary
producers in freshwater and marine ecosystems constitute the basis
of the intricate food webs, providing energy for the primary and
secondary consumers and are thus important contributors for the
production of the human staple diet in the form of crustaceans,
fish, and mammals derived from the sea. Solar UV can negatively
affect aquatic organisms.3–5 The massive loss of stratospheric
ozone over Antarctica during the past two decades as well as ozone
depletion over the Arctic and high to mid latitudes have aroused
concern about the effects of increased solar UV-B radiation on
marine and freshwater ecosystems.6 Clear lakes and oceans in
alpine and polar regions, where UV penetrates deep into the water
column, may be particularly vulnerable. The biological organisms
in polar waters are even more at risk because of the limited repair
capabilities under the inhibitory effects of low temperatures.7

Exposure to solar UV radiation can reduce productivity, affect
reproduction and development, and increase the mutation rate in
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phytoplankton, macroalgae, eggs, and larval stages of fish and
other aquatic animals. Consequences of decreased productivity
are a reduced sink capacity for atmospheric carbon dioxide and
negative effects on species diversity, ecosystem stability, trophic
interactions and ultimately global biogeochemical cycles (cf. Zepp
et al.2). In contrast, UV-A, in addition to being deleterious has
some positive effects, as it can be used as a source of energy for
photosynthesis, or in DNA-related repair mechanisms.

Solar UV radiation and penetration in aquatic
ecosystems

A growing number of stations and networks have shown that
there has been an increase in solar UV-B radiation at the
surface of and within aquatic systems8–11 which corresponds
with stratospheric ozone depletion.12 Comparative measurements
indicate continued increases in solar UV-B, which are masked
by much larger seasonal changes and geographic differences (cf.
McKenzie et al.13).14 Instrument accuracy has been improved in
recent years and measurement deviations have been quantified.15

In addition, biological and chemical actinometers have been
developed to determine UV-B doses on site during experiments
and exposure.16–19

Aquatic environments vary tremendously in their UV attenu-
ation. Coastal areas and shallow continental shelf waters have a
lower transparency than open ocean waters due to the runoff of
silt and dissolved organic carbon (DOC) from shores. In open
oceans the optical properties are largely determined by plankton
and their degradation products,20–22 with zooplankton being an
additional source of DOC.23 Owing to the high input of inorganic
and decaying organic material, freshwater ecosystems usually

This journal is © The Royal Society of Chemistry and Owner Societies 2007 Photochem. Photobiol. Sci., 2007, 6, 267–285 | 267



Fig. 1 This false-color map represents the Earth’s carbon “metabolism”—the rate at which plants absorbed carbon out of the atmosphere during
the years 2001 and 2002. The map shows the global, annual average of the net productivity of vegetation on land and in the ocean. The yellow and red
areas show the highest rates, ranging from 2 to 3 kg of carbon taken in per km2 per year. The green areas are intermediate rates, while blue and purple
shades show progressively lower productivity. In any given year, tropical rainforests are generally the most productive places on Earth. Still, the ongoing
productivity near the sea’s surface, over such a widespread area of the globe, makes the ocean more productive than the land. (Image courtesy of NASA,
2003).

have a high UV absorption which also depends on their level
of eutrophication.24

Ozone and aerosols provide the primary filter in the atmosphere
that reduces damaging UV radiation before it reaches the Earth’s
surface. While stratospheric ozone depletion has now stabilized
and is beginning to return to pre-Montreal Protocol levels
(see McKenzie et al.13), the UV transparency of inland aquatic
ecosystems remains highly variable and subject to increased UV
exposure due to climate change.25 Climate change alters the DOC
concentration and hence the UV transparency of inland waters.
Warmer, drier climates in particular will reduce the inundation
and water saturation of soils within watersheds and hence reduce
the inputs of DOC to adjacent lakes and streams.25 In some cases
a combination of acidification and climate change has led to dra-
matic increases in underwater UV penetration25 (see Zepp et al.2).
The impact of climate change may be particularly pronounced in
freshwater ecosystems with low DOC concentrations due to the
exponential increase in UV penetration at DOC concentrations
below 2 mg L−1 (Fig. 2). Such variable levels of DOC and
hence UV exposure may be important factors in determining the
distribution and abundance of planktonic and shallow benthic
organisms as well as influence the spawning depth of vertebrates
such as amphibians and fish that lay their eggs in shallow surface
waters.

Climate warming has been found to increase eutrophication
in boreal lakes.26 In addition, the export of DOC from boreal
peatlands increases with temperature. Since these areas cover
about 15% of the boreal and subarctic regions and climate
warming is forecast to be most severe at high latitudes, the
increasing temperatures are expected to have significant effects

Fig. 2 Relationship between the depth to which 1% of surface 320-nm UV
radiation penetrates and concentration of dissolved organic carbon (DOC)
in temperature lakes. Note that at low DOC concentrations (1–2 mg L−1)
very small changes in the amount of DOC can cause large changes in the
depth to which UV penetrates. Adapted from Williamson and Zagarese.25

in boreal areas.27 Phytoplankton abundance may vary by or-
ders of magnitude driven by future climate-DOM-UV radiation
interactions.28 Other aquatic ecosystems also show that CDOM
(colored dissolved organic material) is a mediator of climate-
UV interactions.28 Global warming has not only the potential to
affect lake species compositions,29 but also to increase the invasion
potential by imported species.30

Besides inorganic particulate matter, dissolved and particulate
organic carbon (DOC and POC) are the main attenuating
substances in freshwater and coastal marine waters.31 DOC
concentrations often show large spatial and temporal variability.32

Recent models analyzing the absorption of the components show
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that DOC mainly attenuates UV-B radiation while POC mainly
decreases the UV-A radiation in the water column.33 The optical
effects of zooplankton and phytoplankton on UV attenuation
in freshwater ecosystems are usually low,34 but bacterioplankton
plays a major role (cf. Zepp, et al.2). While DOC is only slowly
degraded in the water column, it is readily fragmented by solar UV
to smaller subunits,35 which are consumed by bacterioplankton.36

This increases the UV transparency of the water column37 where
the resulting deeper UV-B penetration affects bacteria and other
organisms.38 In addition, photobleaching increases UV trans-
parency. Increasing temperatures associated with global climate
change are generally expected to decrease DOM concentrations
and thus increase the penetration of UV-B radiation into the
water.39

DOC is a source of dissolved CO2 in the water,40,41 and pCO2 is
closely related to the DOC concentration in Swedish boreal lakes.42

Acidification also decreases DOC concentrations.43,44 Depending
on its concentration, DOC can have positive or negative effects on
phytoplankton growth. Low concentrations contribute to nutrient
recycling (N and P)45 and availability, while higher concentrations
negatively affect phytoplankton growth by shading.46 Bacteria
are the main agents for the mineralization of N and P from
DOC. In addition to biomineralization, phototransformation
alters biodegradation to a variable degree, depending on the source
of DOC.47

Arctic and Antarctic marine and freshwater ecosystems are
additionally affected by snow and ice cover. Even thin layers
of snow or ice significantly decrease the penetration of solar
UV.48 Earlier ice melting due to increased temperature will expose
phytoplankton blooms to higher solar UV radiation. The seasonal
change in sea-ice cover is a major determinant of the Antarctic
aquatic ecosystem. In addition, glacial meltwater plumes play a
critical role near the ice edge and their influence extends more
than 100 km into the open ocean and influences the biota by
water column stratification, changes in turbidity, salinity and
temperature.49 Global warming at higher latitudes may lead to
shallower mixed-layer depth, more intense seasonal stratification
with shallower mixed layers and subsequent influence on UV
impact on aquatic ecosystems.

Plankton

Plankton can be subdivided, based on physiological or taxonomic
criteria into major groups of bacterioplankton, phytoplankton
(including cyanobacteria and eukaryotes) and zooplankton.50

In aquatic ecology, size (on a logarithmic scale) is used as a
subdivision criterion: femtoplankton (0.02–0.2 lm), picoplankton
(0.2–2 lm), nanoplankton (2–20 lm), microplankton (20–200 lm)
and macroplankton (200–2000 lm). Even though the smallest
organisms contribute a significant share to aquatic biomass
productivity, these taxa have not yet been studied extensively in
terms of UV sensitivity.

Bacterioplankton and viruses

Although the bacteria are small in size, they contribute a
significant biomass component in aquatic ecosystems and play
a key role in biogeochemical processes.51 Predation is the major
mortality factor for planktonic bacteria.52 Most bacterioplankton

do not produce screening pigments but overcome solar radiation
stress by fast cell division and effective repair mechanisms.53 As
long as the repair keeps up with the damage, the population is
not threatened; but when CPDs (cyclobutane pyrimidine dimers)
accumulate under high solar radiation, the population decreases.
CPDs constitute by far the most frequent DNA damage induced
by UV-B, followed by single- and double-strand breaks.54,55

DNA damage correlates strongly with the penetration of UV
radiation into the water column, and UV-B has a stronger
effect than UV-A. When bacterioplankton was exposed in UV-
transparent bags in tropical coastal waters, DNA damage was
detectable down to 5 m. However, inhibition of leucine and thymi-
dine incorporation, as markers for protein and DNA synthesis,
respectively, occurred to a depth of 10 m.56 Photorepair by the
enzyme photolyase, using UV-A/blue light as an energy source,57 is
a major mechanism to reduce the CPD load.5 Alternatively CPDs
can be repaired by nucleotide excision repair.58 Because of the path
length of penetration, size seems to be a decisive factor for UV
sensitivity: bacterioplankton from several boreal lakes in Canada
were more sensitive to solar UV than the larger phytoplankton.59

Phytoplankton density significantly influences the depth dis-
tribution of bacterioplankton in the water column. During the
summer, dense diatom phytoplankton populations develop in the
Antarctic waters off the British Rothera Station, causing strong
UV attenuation in the top layers.60 At the surface, bacterio-
plankton incurred large UV-B-induced DNA damage (exceeding
100 CPDs per megabase pairs, Mbp), but it was protected from
solar UV-B below the diatom population. This phenomenon was
particularly prominent during January and February, when sea
ice melting causes pronounced stabilization of the water column.
Later in the season, this effect weakened and DNA damage was
homogeneously distributed throughout the top 10 m in well-mixed
waters.

Solar UV has a decisive role in bacterioplankton community
structure in marine surface waters.61 Large differences in sensitivity
were found between different samples from the northern Adriatic
Sea. When exposed to UV-B radiation, inhibition of amino acid
incorporation varied substantially and there were even larger
differences in the efficiency of recovery between species. In
Antarctic marine bacteria UV-B and UV-A had similar negative
effects on survival.62 In contrast, in a high mountain lake (Spain)
UV-A exerted the main effect.63 In the upwelling zones of the
Humboldt Current System, PAR induced a significant inhibition
of bacterial productivity followed by UV-A and UV-B.64

Both in the Arctic and Antarctic, spores of Bacillus subtilis
were inactivated by solar radiation within hours. However, a
covering of ca. 500 lm of soil or dust or a retreat of ∼1 mm
into endolithic habitats prevented inactivation of the spores.65

Snow covers of 5–15 cm thickness attenuated UV penetration
by a factor of 10 and protected the spores from inactivation.
Crust formation and biofilms are additional protective measures
against environmental factors including desiccation, temperature
changes and solar UV.66 Halobacteria, being Archaea, show a
much higher resistance to solar UV radiation than bacteria and
even tolerate UV-C radiation,67 reflecting the tolerance of shorter
wavelengths penetrating through the atmosphere during early
evolution of these organisms. At present UV-C does not reach the
Earth surface—except high mountain locations—due to complete
absorption in the atmosphere.
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Another decisive factor for bacterial communities is the con-
centration of viruses.68 Virus-to-bacteria ratios were found to
be lowest in freshwater lakes and highest in saline lakes. The
viral abundance was closely correlated with the concentration of
DOC. Viruses have neither effective sunscreens nor photorepair
capabilities69 and are prone to solar UV damage.70 This is sup-
ported by their seasonal abundance in central European lakes.71

However, while being sensitive to solar UV, it is surprising that
the presence of viruses can provide some protection from solar
UV to their phytoplankton hosts such as Phaeocystis; the reason
for this unexpected phenomenon is not known.72 Anthropogenic
pollutants such as cosmetic sun screens increase the abundance of
viral particles in the water.73

Picoplankton

Unicellular picophytoplankton such as Synechococcus and
Prochlorococcus are recognized as ubiquitous organisms of
oceanic microbial loops and as the most abundant marine primary
producers.74 The effects of ambient levels of solar radiation
on oceanic picoplankton were studied in the water column75

using the range from unattenuated radiation to 23% of the
surface level. The radiation significantly increased cell death in
Prochlorococcus, while the cyanobacterium Synechococcus had
ten times the survival rate. Removal of UV radiation strongly
reduced the cell death rate in the first species and eliminated it
completely in Synechococcus. Natural solar radiation decreased
the half-life times of the cells to a little over a day. A similar
differential sensitivity of the two groups was found for Mediter-
ranean ecotypes.76 This generally high sensitivity of picoplankton
to ambient solar radiation may act as a primary driver of species
composition and population structure and govern the dynamics
of the microbial food web in clear oceanic waters.75

Natural levels of solar UV-B have been determined in the
Red Sea using a DNA biodosimeter.77 In parallel, depth profiles
of DNA damage were analyzed in plankton samples that had
been collected from the water column down to 50 m. While
the dosimeter did not show any response below 15 m, CPD
DNA damage could be found in all plankton samples. CPD
concentrations increased during the day and decreased over night,
indicating DNA repair, but the dark repair processes did not
remove all CPDs during the night. Exposure to UV-B increases
the membrane permeability as shown in Nannochloropsis, which
decreases the nitrogen uptake capability.78

Cyanobacteria

During the early Precambrian era, fluxes of solar UV-B and UV-C
at the surface of the Earth were several-fold higher than today
due to the lack of oxygen in the atmosphere and the consequent
absence of ozone in the stratosphere (cf. McKenzie et al.13). Early
evolution was therefore limited to UV-protected aquatic habitats.
Nonetheless, there was a strong selection for protective and miti-
gating strategies of early organisms against solar UV radiation.79,80

The early UV screens in aqueous environments may have been
simple aromatic organic molecules, which later developed into
specialized UV absorbers still found in cyanobacteria as well as in
some eukaryotic photosynthetic organisms.79

Cyanobacteria are major biomass producers both in aquatic
and terrestrial ecosystems and represent more than 50% of the
biomass in many aquatic ecosystems.79 Because of their nitrogen-
fixing capacity they serve as important fertilizers both in the sea
and in terrestrial plant habitats such as tropical rice fields. Some
cyanobacteria produce highly toxic substances, including neuro-
toxins and peptide hepatotoxins, which cause animal poisoning in
many parts of the world81 and pose considerable risks for human
health by polluting drinking water reservoirs and recreational
areas.82 In the Baltic Sea the filamentous Nodularia forms extended
blooms in late summer during calm weather.83 These organisms
are tolerant of ambient solar UV-B levels and outcompete more
sensitive organisms even though solar UV-B has increased by 6–
14% over the last 20 years in this area.84

Recent studies show that UV-B radiation treatment results in a
wide range of responses at the cellular level, including motility, pro-
tein biosynthesis, photosynthesis, nitrogen fixation and survival in
cyanobacteria.85,86 The molecular targets include DNA and the
photosynthetic apparatus.87,88 The phycobiliproteins, which serve
as solar energy harvesting antennae, are specifically bleached by
UV radiation.89,90 However, several studies have demonstrated an
adaptation to UV stress and an increased resistance.91,92 Long-term
exclusion of solar UV decreased the photosynthetic competence.93

Adaptive mutagenesis, which has been found in cyanobacteria,
increases their resistance to UV-B.94 Additional stress by exposure
to heavy metal ion pollutants adds to the UV-B effect.95,96

Recent studies show that UV-B radiation treatment results in
a wide range of responses at the cellular level. On the molecular
level UV exposure causes a wide range of responses. It induces an
increased Ca2+ influx via L-type calcium channels.97 The stress
signal is subsequently amplified and transmitted using cyclic
nucleotides as secondary messengers98 followed by the production
of shock proteins. UV-B treatment increased the concentration of
493 proteins out of 1350 at least threefold in the terrestrial species,
Nostoc commune.99 In addition to direct UV-B-induced damage
to the DNA, oxidative stress (singlet oxygen and superoxide
radicals) and damage were reported, causing lipid peroxidation
and DNA strand breakage.100 After prolonged UV-B exposures
an adaptation to the reactive oxygen species (ROS) stress has been
observed.100 Typical ROS quenchers such as ascorbic acid, N-
acetyl-L-cysteine or sodium pyruvate have protective effects.101,102

Protective and mitigating strategies of cyanobacteria include
mat or crust formation,103 vertical migration of individuals within
the mat, or self shading due to changes in morphology as
observed in Arthrospira platensis.104 In microbial mats the surface
layer often serves as a protector for the organisms underneath.
A mat in a high Arctic lake showed high concentrations of
photosynthetic pigments in the lower part of the mat, while
the black top layer was rich in scytonemins and MAAs.105 By
producing UV-absorbing substances including MAAs and/or
scytonemins, many cyanobacteria are able to withstand excessive
solar UV radiation.106–108 MAAs are water-soluble compounds
and have absorption maxima in the range from 310 to 360 nm.79

Upon absorption of UV radiation MAAs form triplet states which
thermally relax and thus render the radiation energy harmless.109

MAAs are either constitutive elements within the cells or are
induced by solar radiation.110 In many cases action spectroscopy
has shown that solar UV-B (which peaks around 300 nm)
induces MAA synthesis in algae and phytoplankton, while visible
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radiation has no effect.111 Biosynthesis of scytonemin is induced
by exposure to UV-A radiation and can be enhanced by elevated
temperatures and photooxidative conditions.106 Scytonemins are
exclusively synthesized by cyanobacteria and are chemically very
stable. They can accumulate in sediments; their abundance in
sediment cores has been utilized to reconstruct variations in the
light regime over time.112 Natural populations of the same species
may vary in their concentration, indicating genetic differences.113

Phytoplankton

Phytoplankton are by far the major biomass producers in the
oceans, and form the basis of the aquatic food webs. Their
productivity rivals that of all combined terrestrial ecosystems.
Another key ecological factor is that phytoplankton contribute
significantly to the biological pump: atmospheric carbon dioxide
is taken up by primary producers in the sea and is cycled through
primary and secondary consumers. Most of this carbon dioxide
returns to the atmosphere, but part of this sinks to the ocean
floor as zooplankton fecal pellets and, to a larger extent, as dead
phytoplankton.114 In effect the biological pump removes about
3–4 Gt of carbon per year from the atmosphere and partially
offsets anthropogenic input of carbon from fossil fuel burning
and tropical deforestation.115

Phytoplankton are not evenly distributed in the oceans but
dominate in the circumpolar regions and the upwelling waters
over the continental shelves, as seen by satellite imaging.116

Estimated cell density differences are in reasonable agreement
with measurements in the field.117 Marine phytoplankton are
dominated by small-sized cells of <2 lm diameter.118 A large
number of recent studies points to a considerable sensitivity of
phytoplankton communities to solar UV, ranging from polar to
tropical habitats.119

Besides limitations in nutrients, light availability, pH and
non-permissive temperatures, degree of adaptation and grazing
pressure, high levels of solar radiation inhibit photosynthesis in
species of different taxonomic groups.120–123 The UV component
adds more to photoinhibition than its energy share in solar
radiation.124 This inhibition can be monitored in terms of oxygen
exchange,125 carbon acquisition126 or by measuring the quantum
yield using pulse amplitude modulated (PAM) fluorescence.127

Nutrient (mainly nitrogen and phosphorus) starvation often
augments the UV effects on photosynthetic performance,128 but
may affect various species to a different degree causing changes
in community structure.129 This effect of nutrient deficiency
may be caused by less efficient repair processes.123 In addition,
nutrient uptake, such as phosphorus, may be impaired by solar
UV radiation.130 Pollutants such as tributyltin, a constituent of
antifouling paints, have a synergistic negative effect.131,132

Photorepair is limited at low temperatures. While at 6 ◦C
solar UV radiation significantly inhibited growth in natural
phytoplankton samples from a mountain lake in the USA,
no such inhibition was observed at 14 ◦C, indicating that the
repair processes compensate the UV inhibition at the elevated
temperature.133

Experimentally, ozone depletion has been mimicked by adding
supplementary UV radiation from lamps to ambient solar radi-
ation. This approach was tested at three locations in Southern
Brazil, Canada and Patagonia.134,135

Photoinhibition in terms of photosynthetic quantum yield is
linked to the same mechanism as in other eukaryotic photosyn-
thetic organisms from algae to higher plants: the photosynthetic
electron transport chain is disrupted by photodegradation of
the D1 protein in Photosystem II.136,137 Low visible radiation
enhances the repair efficiency while high PAR enhances the
damage.138 Inhibition of protein synthesis results in retarded
recovery. Nutrient starvation limits recovery also.138 In contrast
to photosynthesis, respiration is less affected by ambient levels of
solar UV radiation.139

Exposure of natural Antarctic marine plankton to UV at depths
from 1 m to less than 20 m showed that some phytoplankton
species died, some flourished and others showed no effect.140

These and other results suggest that ozone-related enhanced
UV-B may change food web structure and function which in
turn may affect biogeochemical cycles.141 In Canadian Rocky
Mountain lakes solar UV-A and UV-B were found to decrease
algal density and alter community composition.142 However, some
studies indicated that after long-term exposure to solar UV,
phytoplankton can adapt to the radiation.143 UV-A had a higher
impact than UV-B on hard-bottom shallow marine communities,
but the effects on diversity and biomass disappeared during
species succession within a few months.6,144 Also, in Patagonian
oceanic plankton assemblages, UV-A had a stronger effect on
photosynthesis during bloom periods than UV-B.145 However,
the relative sensitivity of phytoplankton to UV-A and UV-B
may depend on the species composition and the nutrient state.146

Mixing is an important factor in plankton survival. In contrast to
marine habitats with high mixing, lakes often show stable thermal
stratification. Consequently, lake plankton communities show
vertical distribution147 and populate certain horizontal bands of
optimal light conditions148 using buoyancy and active motility for
niche selection. In the subtropical lake Tanganyika, phytoplank-
ton were affected by solar UV radiation only in the top half-meter,
reducing photosynthetic rates, damaging DNA (CPD formation)
and inducing UV-absorbing compounds, indicating that vertical
mixing decreases solar UV effects by transporting the cells to depth
where active repair can take place. Fast vertical mixing within the
upper mixing layer of tropical marine environments can enhance
photosynthesis. Under cloudy conditions UV-A can be used as a
source of energy, while under slow mixing and cloudless skies UV-
A is inhibitory.149 Other targets of UV-B damage are changes in
ultrastructure and pigment concentration and composition.150,151

Besides direct effects on cellular targets, UV-B also operates
via the production of ROS.152 Phytoplankton defend themselves
by activating antioxidant systems. However, UV-B decreases the
activity of antioxidant enzymes and ROS scavengers.153

One mechanism of photoprotection against high solar radiation
in many algal species (except red algae) is the xanthophyll
cycle, which relies on the thermal dissipation of excess excitation
energy thereby reducing the formation of singlet oxygen in
the chloroplasts.154 Zeaxanthin formation is also involved in
increased non-photochemical quenching based on the migration
of electronic excitation energy from Photosystem II chlorophyll to
nearby carotenoids. UV exposure can enhance this process.155

MAAs are effective UV screens that protect phytoplankton
from high solar UV radiation.156 In the English channel MAAs
are present on a year round basis with concentrations increasing
rapidly during spring often coinciding with the appearance of
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algal blooms.157 The action spectrum for MAA synthesis induction
shows a clear maximum in the UV-B range.158 In the dinoflagellate
Scrippsiella, daily vertical migrations have been found to be related
to circadian MAA biosynthesis.159,160 In dinoflagellates, MAAs
seem to be packaged in certain organelles probably increasing
the protective efficiency for specific cellular targets.161 MAAs can
operate both as UV absorbers and as quenchers for oxidative
stressors.162,163 While MAAs are very stable molecules with respect
to extreme temperatures, pH and UV radiation, they are easily
destroyed in water in the presence of photosensitizers.164

Some freshwater yeasts represent a small group of planktonic
organisms showing both a constitutive and a UV-inducible syn-
thesis of photoprotective carotenoids and mycosporines.165–167 The
specific MAA is a compound linked to a glutaminol-glucoside,76

which is also accumulated by copepods and ciliates from their
diet.167 Some green algae in extreme UV environments (snow algae)
use sporopollenin as a UV-absorbing substance.168 Others rely on
massive accumulations of carotenoids such as astaxanthin169 or
b-carotene,170 which provide protection against oxidative stress by
scavenging singlet oxygen or peroxyl radicals.161

Some phytoplankton taxa including dinoflagellates and diatoms
produce toxic substances, such as neurotoxins and domoic acid,
and are a severe threat to animals and humans when they form
blooms. Recent blooms of the toxic Pseudo-nitzschia have caused
mass mortality among dolphins, sea lions and birds along the
Californian coast.171 These blooms seem to be increasing in
frequency and geographical range. The organisms have a low
sensitivity to solar UV radiation and escape damage of their
photosynthetic apparatus by switching to heterotrophic growth.

Several taxa of marine phytoplankton such as Prymnesio-
phyceae and some dinoflagellates produce dimethylsulfoniopro-
pionate (DMSP) which is converted into dimethylsulfide (DMS)
(cf. Zepp et al.2). The latter is emitted into the atmosphere and
forms cloud condensation nuclei, thereby affecting local climate
over the ocean.172 Cleavage of DMSP is induced by mechanical
or dark stress, by grazing or viral attack.173 This indicates that
DMSP is involved in coping with oxidative stress.174,175 Because of
the pronounced vertical migrations of the dinoflagellates, diurnal
patterns were recorded in DMS production in the St. Lawrence
Estuary. Recently, lakes and estuaries have also been found to be
important sources of DMS.176 A model has been developed to
simulate the seasonal patterns of DMS production and validated
against nutrient concentrations, biological standing stock and
other parameters.177 Marine biogenic iodocarbon emissions are
also significant for marine aerosol formation and have a key effect
on global radiative forcing.178 Besides changes in stratospheric
ozone, cloud cover is a major factor controlling the exposure of
organisms to solar UV.179

The sea-ice ecosystems in the circumpolar oceans and water
bodies of the Baltic and Caspian Seas constitute some of the largest
biomes on Earth.180 The semisolid ice matrix provides niches in
which bacteria, phytoplankton algae, protists and invertebrates
thrive.181 Those organisms are strongly affected by temperature,
salinity, nutrients, visible and ultraviolet solar radiation.182 Sea-ice
phytoplankton provide the fundamental energy and nutritional
source for invertebrates such as krill in their early developmental
stages which amount to about a quarter of the biomass production
in ice-covered waters. The extreme conditions of their habitat
force the organisms to adapt physiologically. The production of

large concentrations of MAAs is also essential for the survival of
primary consumers which ingest and incorporate the MAAs for
their own protection. The expected loss of about 25% of the sea
ice due to global warming over the current century will certainly
affect the productivity of the polar oceans.182

Anthropogenic acidification of boreal lakes decreases resistance
of organisms to UV radiation and affects species composition with
increasing trophic level. Therefore it is assumed that loss in species
diversity will increase the susceptibility of acidified lakes to other
stress factors. Ecosystem stability in boreal lakes is thus likely to
decline as global change proceeds.183

Experiments in large (volume >1 m3) outdoor enclosures, called
mesocosms, are useful for the study of complex impacts on
food-web structure and dynamics.184–186 Mesocosms permit well-
controlled experiments with natural phytoplankton communities
in physical, chemical and light conditions mimicking those of the
natural environment. In addition, UV radiation within mesocosms
can be manipulated to simulate various levels of ozone depletion.
Belzil and coworkers184 find that while UV radiation increases
can have subtle effects on bulk biomass (carbon and chlorophyll),
changes in community structure may be a more significant
ecological effect, because of differential sensitivity to UV radiation
among planktonic organisms. These workers note that “plank-
tonic communities do not suffer from the catastrophic negative
impacts that might have been inferred from some laboratory
experiments on individual components of the marine food web”.
They note, in agreement with previous observations, that ambient
levels of UV radiation already have significant effects. Mesocosm
experiments, including both plankton and their grazers, also
suggest that changes in community structure are potentially
more important than effects on overall algal biomass.186 Other
workers found that phytoplankton growth was inhibited by UV
radiation in fixed-depth experiments but not in mesocosms where
vertical mixing exposed planktonic organisms to variable radiation
regimes.187 A synthesis model simulating mesocosm experiments
suggests that enhanced UV-B could cause “a shift from primary
producers to bacteria at the community level”.188 Such a shift in
community structure could have important consequences for CO2

levels in oceanic surface waters. A mathematical model based on a
predator–prey scheme considers sedimentation of phytoplankton,
vertical mixing, and attenuation of PAR as well as UV radiation in
the water column. Surprisingly, higher inhibition by UV radiation
and longer mixing periods can induce strong fluctuations in the
system and enhance plankton productivity due to the stronger
effects on the predators.189,190

Macroalgae and aquatic plants

Macroalgae are major biomass producers on rocky shores and
continental shelves. The macroalgae canopies form habitats for
larval fish, crustaceans, and other animals. Macroalgae are of
commercial importance and are harvested on a large scale from
natural vegetation and aquaculture for human consumption and
industrial use.

Even without ozone depletion, UV-B radiation constitutes a
significant stressor for macroalgae. Exposure to solar UV-B results
in a host of biological effects on the molecular, cellular, individual
and community levels.191 Macroalgae are stressed by solar UV
radiation to an extent which is genetically determined and results
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in a pronounced vertical stratification.192 Even closely related
species of the same genus may have significantly different UV
sensitivity, causing them to grow in different habitats.193 UV-
tolerant species populate the tidal zone, while more sensitive
species are found in deeper waters.194 Seasonal changes in UV and
visible radiation also result in a pronounced succession of species
over the year in marine macrobenthic communities.195 Besides
changing salinity, temperature and desiccation in their habitats,196

macroalgae are exposed to extreme variations in light intensity due
to daily, seasonal and tidal cycles as well as changing turbidity in
the water column.197 Intertidal macroalgae of all major taxa can
rapidly adapt to fast changes in radiation.198,199 Environmental
conditions can be extreme in macroalgal habitats where, at polar
growth sites, species have to survive in total darkness during several
winter months.200

Young specimens were more prone to UV inhibition of pho-
tosynthesis, and species collected shortly after the winter were
found to be affected more than those harvested later in the year,
indicating an adaptive strategy to increasing natural short-
wavelength radiation.201 Both Arctic and Antarctic species showed
pronounced effects of solar UV-B on photosynthesis, morphology
and growth rates.202,203 Unfiltered solar radiation proved lethal
to several Antarctic deep water algae. While tropical macroalgae
are better adapted to higher solar UV and visible radiation than
higher-latitude species, they are also affected by ambient solar
UV.204 Both UV-A and UV-B decrease growth rate, quantum
yield of photosynthesis and cause accumulation of DNA damage.
Since different species show different sensitivities, increases in solar
UV-B radiation could influence species recruitment in the upper
intertidal zone.205

Excessive solar radiation causes photoinhibition of
photosynthesis;206 elimination of total UV or UV-B alone
reduces the severity of photoinhibition and shortens recovery
time in many species.154,207,208 Electron microscopy revealed
pronounced damage of the thyalkoid structure.209 Enzymes
involved in the photosynthetic CO2 fixation and sugar formation
are affected by UV radiation and the concentration of chlorophyll
a decreases.210,211 The photosynthetic accessory phycobiliproteins
operating as antenna pigments in red algae are even more
sensitive to solar UV radiation.212 UV-B is more effective than
UV-A in decreasing growth rate.205 In a laboratory study exposure
to UV resulted in significant release of organohalogens from
several polar macroalgae. These substances have ozone-depleting
characteristics and so potentially enhance the incidence of solar
UV.205

Most macroalgae have an efficient photorepair system of UV-
induced CPDs.213 Besides DNA repair mechanisms, efficient ROS
scavenging enzymes were found in many macroalgae.214 In several
Arctic algae these enzymes vary significantly in activity over the
growing season when algae have been collected before, during
and after break-up of sea ice.215 UV sensitivity decreases with
age and developmental stage of macroalgae. The germination
capacity of zoospores from five Laminariales species were found
to decrease sharply after 16 h of exposure to visible and UV
radiation.216 Both zygotes and young germlings of brown algae
show massive inhibition; UV-B radiation is more effective than
UV-A.217 Also juvenile stages of red and green algae showed
a pronounced UV sensitivity.218 Both UV-A and blue radiation
reactivate spore germination after UV-B inhibition, indicating

photolyase activity.219 Motile gametes of brown algae use light-
directed movement (phototaxis) to accumulate at the water surface
improving the chances of finding a mating partner, but that pho-
totactic response is drastically inhibited by solar UV. Enhanced
levels of solar UV-B may affect this vital strategy and thus impair
development of kelps.220

Many macroalgae of the tidal zone produce UV-absorbing
compounds while subtidal species usually do not have this
protection. However, deep-water algae are rarely exposed to
significant levels of solar UV radiation.221 Red algae have the
highest percentage of species that synthesize MAAs,222 followed
by brown and green algae. The protective effect of MAAs was
shown in the red alga Porphyra, commercially sold as Nori,
where they block thymine dimer production.223 MAAs are very
stable against elevated temperatures and UV exposure.224 The
presence of ammonium increases the accumulation of MAAs.
The blue component of visible radiation has the highest effect in
inducing MAA biosynthesis in Porphyra.225 Polychromatic action
spectra of induction reveal the efficiency of short wavelength
radiation in several species.226,227 Recently a new group of MAAs
absorbing at 322 nm has been identified in green algae.228 The
common sea lettuce, Ulva, was found to produce a UV-B absorbing
compound with a maximum at 292 nm.229 In brown algae a
novel group of UV-absorbing pigments, phlorotannins, has been
found.230 Macroalgae can be classified according to their MAA
production. Most deep water algae never produce MAAs even
when transplanted to surface waters. Algae from the intertidal
zone often show induction of MAAs, while species growing near
the water surface normally have a high concentration of MAAs,
which cannot be further induced.231 Other defense mechanisms
against photooxidative stress involve the induction of a wide range
of antioxidant enzymes in brown, green and red algae232 as well as
biosynthesis of several carotenoids.226

Aquatic mosses and liverworts show UV-B-related responses
similar to those of many macroalgae, including inhibition of pho-
tosynthesis, growth and pigmentation.233,234 PAM measurements
show a pronounced photoinhibition during noon, from which the
thalli recover when the UV stress decreases.109 When exposed to
high levels of solar UV-B radiation they produce UV-absorbing
compounds, which seem to be hydroxycinnamic acid derivatives.235

Aquatic flowering plants are also affected by solar UV. Sea grass
meadows cover large areas of sandy bottom in shallow water236

and contribute substantially to the aquatic biomass productivity.237

Photosynthetic quantum yield dramatically decreases under unfil-
tered solar radiation. Removal of UV-B or total UV improves the
photosynthetic activity.238 Transfer experiments on plants growing
at 15 m to 2.5 m water depth indicate an efficient adaptation
of sea grasses to higher solar UV. Epiphytes growing on sea
grass leaves has been considered detrimental since it reduces
the photosynthetically available radiation, but as they strongly
absorb UV-B radiation they exert a beneficial effect.239 In a
submersed aquatic angiosperm, UV-B exposure over 7–16 days
caused an increase in several photosynthetic enzymes. Water
transparency to visible and UV governs the distribution and
abundance of submerged macrophytes in lakes in the Canadian
Arctic.240 Antioxidant enzymes were also activated by UV.241 The
common freshwater duckweed, Lemna, shows strong responses
to simulated solar radiation, with a pronounced increase in ROS
responses. This UV-induced stress response was augmented by
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exposure to copper, which alone also activates the ROS pathway.242

Related species differ considerably in their UV-B sensitivity.243

Consumers

Consumers form the next higher level in the aquatic food webs
after producers (Fig. 3). In most cases several trophic levels follow
each other, usually starting with zooplankton being the primary
consumers. It is evident that a UV-related decrease in primary
producer biomass has an effect on growth and survival of the
consumers. In addition, specific UV effects have been identified in
almost all consumers.244

Fig. 3 Schematic diagram of classic and microbial marine food webs
illustrating the flow of carbon and energy through the systems. Adapted
from DeLong and Karl, courtesy of the National Biological Information
Infrastructure (NBII).245

Zooplankton

Zooplankton includes unicellular and multicellular life forms and
can be classified in several size classes. It is also comprised of larval
forms of fish, crustaceans, echinoderms, molluscs and other phyla.
These forms will be discussed below.

Zooplankton community structure in freshwater ecosystems
is controlled by multiple factors, including DOC content and
distribution throughout the water column, which regulates UV
penetration (see ref. 2). UV radiation is a potential driving
force for zooplankton community structure in some lakes.246 In
shallow ponds of Finnish Lapland Daphnia only occurs when
sufficient amounts of DOC are present.247 Depending on the
terrestrial succession in the watersheds of several Alaskan lakes,
the UV attenuation depths (1% of surface irradiance at 320 nm)
vary from 0.6 m to more than 14 m. This UV regime strongly
controls the species composition of major macrozooplankton.
When zooplankton from a UV-opaque lake was transplanted
into the surface water (0.5 m depth) of a UV-transparent lake, it
perished within only a few days, suggesting a strong link between
early succession of zooplankton communities and terrestrial plant
communities (a source of DOC) within the watershed. Large
variations in UV sensitivity were also found in a study involving
lakes of different UV transparencies.248,249 In response to high
solar UV, Daphnia shows a pronounced avoidance response when
observed in UV transmitting acrylic columns suspended in the

surface waters. In contrast, when UV-B and short-wavelength
UV-A are blocked, the animals prefer moving to the surface. In
a low-UV lake, no such preferential behavior was seen. These
results and those from a follow-up, open-lake experiment indicate
that UV radiation may influence the vertical distribution and
habitat partitioning of certain zooplankton in high-UV lakes,
while predation, food availability and other factors may be more
important in low-UV lakes.250 Studies of sublethal effects of UV on
the freshwater cladoceran Daphnia show increases in respiration
rates at low levels of UV exposure and decreases at high levels.251

In their natural habitat, zooplankton face conflicting selec-
tion pressures. While invertebrate predators induce an upward
movement during daylight hours, this exposes zooplankton to
strong surface UV exposure.252 Even though Daphnia and other
zooplankton try to escape from surface UV radiation by vertical
migration, the organisms cannot avoid excessive exposure. The
copepod Boeckella, living in Lake Titicaca with very high solar
UV levels, counters the detrimental effect by incorporating photo-
protective MAAs.253 Copepods cannot synthesize these substances
but acquire them from their algal diet (e.g., dinoflagellates).160

In a study of Antarctic copepods, MAA concentration was
strongly correlated with UV tolerance.254 In an alpine lake there
was a strong seasonality in MAA concentrations in phytoplankton
and copepods with more than three times higher concentrations
in the summer than in the winter.255 Besides vertical migration
and UV screening, copepods rely on photorepair of UV-B-induced
DNA damage256 as shown in species from Patagonia, Argentina.257

Photoenzymatic repair contributes significantly towards UV-
B tolerance in many cladocerans.258 Some Antarctic copepods
possess a less efficient photorepair mechanism, which has been
attributed to the low temperatures typical of Antarctic lakes.254

The implication is that at elevated temperatures (due to global
warming) the enzymatic photorepair of UV-induced damage
should be more efficient.259 This hypothesis was tested in living
Daphnia by extracting DNA at various temperatures. UV-induced
DNA damage increased with temperature, but the light-dependent
enzymatic repair more than offset the effect and the net DNA
damage significantly decreased with increasing temperature.260

This result was supported by a study of planktonic rotifers and
crustaceans in Northern temperate lakes where UV had less
detrimental effects on abundance and reproduction at higher
temperatures.261 However, one study found that mortality and
DNA damage were as high as at low temperatures in freshwater
ciliates, indicating that photolyase has an optimal temperature for
its activity.262 It is interesting to note that although elevated levels
of solar UV induce mutations, there does not seem to be evolution-
ary selection toward UV protection in halophilic crustaceans.263

Feeding experiments indicate that UV-B pretreated phytoplankton
species negatively affect the life history of Daphnia.264 Adults were
smaller, and a smaller number of juveniles with lower fitness were
produced under these conditions than in the controls, indicating
that UV-B had a significant effect on food quality and impaired
energy transfer to the next trophic level.265,266 The effect of climate
warming on macro-zooplankton is subtle: Copepod populations
were reduced in size but those of ostracods increased.267 In contrast
predation by fish has a major effect on population composition
and density.

Several workers have reported results consistent with the
hypothesis that UV influences zooplankton community structure
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and succession during early lake ontogeny. Engstrom and co-
workers268 studied the chemical and biological trends during
lake evolution in recently deglaciated terrain near Glacier Bay,
Alaska. They demonstrated that dissolved organic carbon (DOC)
concentrations increased with lake age. Williamson et al.,269

investigating changes in UV attenuation and macrozooplankton
community structure in these same lakes, showed a strong
dependence of UV radiation transparency on terrestrially derived
DOC. They suggest a link between the development of terrestrial
plant communities within these lake watersheds, changes in lake
hydrology, and the early succession of zooplankton communities
following deglaciation. These results suggest that UV radiation
may be a more important factor than previously recognized in
determining the distribution and abundance of zooplankton in
lake ecosystems.

Corals and sea anemones

Recent accelerated catastrophic coral mortality has been linked
with several environmental factors including bacterial and
cyanobacterial infections,270 increasing temperatures,271–274 marine
pollution275 and human destruction of coral reefs. Many corals rely
on the photosynthetic activity of dinoflagellates (zooxanthellae).276

At temperatures exceeding a thermal threshold, corals are
bleached. The underlying mechanism could be photoinhibition
of photosynthesis in the zooxanthellae induced by the production
of reactive oxygen species.277,278 However, recent results indicate
that corals and their symbionts may be capable of adapting to
higher temperatures.279 Like corals, giant clams harbor symbiotic
zooxanthellae. Clams also suffered mass bleaching on several reefs
of the Great Barrier Reef.280 Virus-like particles could also be
associated with coral mortality.281

When symbiotic algae are exposed to solar radiation the host
is also subjected to damaging solar UV radiation. Some stony
corals expand their tentacles upon exposure to photosynthetically
active radiation and contract them when encountering excessive
radiation.282 As a counter-measure to enhanced solar UV the algae
produce MAAs, some of which are also transferred to the host.276

Moreover, the host develops antioxidant defences to protect
itself from the photosynthetically produced oxygen. Herbicides
also affect corals by impairing the photosynthetic symbiotic
zooxanthellae.283 Laboratory-kept colonies of the coral Stylophora
maintained minimal amounts of MAAs, but the concentration of
the UV-absorbing pigments increased rapidly upon exposure to
broadband UV.284 Four MAAs, produced by the zooxanthella
Symbiodinium, increased first, followed by six additional ones
which were synthesized at the expense of the primary MAAs.

Sea anemones occur in several color phenotypes. At the coast
of Discovery Bay, Jamaica, pink morphs are more abundant
in the lagoon and in deeper areas, while green individuals are
found in the forereef (seaward and downward from the reef crest)
and in shallower areas. Genetic analysis revealed two distinct
variants with different UV absorbance and UV acclimatization
capacities.285 A comparison of sea anemones with dinoflagellates
or green algae as symbionts or asymbiotic species showed that
the MAAs mainly reflect phylogenetic differences among the
anemones rather than the presence or kind of symbiont.286

Sea urchins

Exposure to UV radiation causes apoptosis (cell self-destruction)
in developing sea urchin embryos.287 Embryos of three sea urchin
species from different habitats ranging from the Gulf of Maine
to the Antarctic indicated significant amounts of accumulated
DNA damage in the form of cyclobutane pyrimidine dimers
(CPD). Biological weighting functions for DNA damage indicated
a high sensitivity for UV-A radiation, but the most sensitive
species show an increased susceptibility to UV-B correlated with
the lowest concentration of UV-absorbing compounds.288 Larvae
and embryos of these species dwell within 5 m of the ocean
surface. UV-induced damage in the different larval stages was
clearly correlated with the absence of MAAs. The absence of
UV-screening substances strongly decreased survival.289 Further,
the observed delays in early cleavage and following development
were closely related with UV-induced DNA damage. Reproduction
in the circumpolar sea urchin Sterechinus occurs during austral
spring when ozone concentrations during the past 25 years have
declined by more than 50%. When the planktonic embryos were
exposed in the top 1 m of the water column, nearly all exhibited
DNA damage and 100% showed abnormal development.290 UV-B
removal prevented DNA damage. At depths below 3 m hardly any
abnormal development or DNA damage occurred. The threshold
for DNA damage from ambient solar UV-B was ≤25 kJ m−2

(inducing ∼17 CPDs mb−1) and levels >80 kJ m−2 precluded
normal development.

The Antarctic sea ice has been thought to protect the benthic
invertebrate fauna from solar UV-B radiation. However, recent
investigations showed that short-wavelength UV-B (down to 304
nm) is transmitted through the austral spring annual ice of
McMurdo Sound where it causes DNA damage and mortality
during the early development in sea urchin embryos.291 The degree
of damage and mortality varies from year to year and depends on
the thickness of the sea ice and on the total column ozone.

Amphibians

During the last decade amphibian populations have suffered
widespread declines and even extinctions on a global scale.292,293

Many different factors, including habitat destruction294,295

and fragmentation,296–299 global climate change,300,301 acid
precipitation,302,303 environmental pollution,304–307 including an-
thropogenic pesticides306,308 and fertilizers,309 parasites,310 introduc-
tion of exotic competitors and predators,311–316 fungal diseases,317,318

and other pathogen outbreaks,319–321 interannual variability in
precipitation, as well as climate change-induced reductions in
water depth at oviposition sites, have been suggested as responsible
for those global declines.322,323 Since the 1990s, malformations have
been noted in many parts of the United States323 and in many other
countries all over the globe.324,325

Among other factors, solar UV-B radiation has been vari-
ously implicated as a possible contributing factor326 involved in
malformation and mortality, especially during the embryonic
development. However, there are two conflicting views on the
involvement of UV-B in amphibian declines.327,328 In a controlled
laboratory study, leopard frogs (Rana pipiens) were exposed to
unfiltered solar radiation or radiation without UV-B or total
UV.329 Unlike natural conditions, the larvae in the laboratory
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could not avoid exposure. Full sunlight caused ca. 50% mortality
in early larval development, while filtered solar radiation had
no effect. There was a clear correlation between solar UV
doses and hindlimb malformation. In situ studies in the natural
amphibian habitat showed a considerable protection from solar
UV radiation by DOC and vegetation shading, especially during
the sensitive development during spring.330 When exposed to
ambient solar radiation under controlled conditions and when
natural shade and refuge were eliminated, embryos and larvae
of several anuran species died.331 A subsequent quantification of
the outdoor UV exposure in Northern Minnesota and Wisconsin
wetlands indicated that the risks for UV-induced malformations
and mortality are low for both Northern leopard and mink
frogs. The exposure of amphibian eggs and larvae to solar UV
radiation strongly depends on the concentration of DOC in the
water column.332 One important factor is oviposition behavior:
species which lay their eggs in UV-protected sites may be more
sensitive to solar UV exposure than those which deposit their
eggs at the water surface.333 Amphibian species with the highest
physiological sensitivity to UV-B are those with the lowest field
exposures as a function of the location of embryos and the UV-
B attenuation properties of water at each site. These results also
suggest that conclusions made about vulnerability of species to
UV-B in the absence of information on field exposures may often
be misleading.333

Red-legged frog embryos (Rana aurora) appear to be tolerant
to current ambient levels of UV-B, but radiation even slightly
exceeding the ambient levels is lethal.334 Although embryonic size
is a complicated issue and small size at hatching can change very
quickly after feeding, even at ambient levels, larvae exposed to
UV-B as embryos tend to be smaller and less developed than non-
exposed organisms. Amphibians use behavioral, physiological
and molecular defences against solar UV-B damage, but species-
specific sensitivities may cause changes in community structure
due to persistent UV-B level increases,335 but because some
species may be more successful than others, changes in species
composition can result.335

Fishes

Although humans use about 8% of the productivity of the oceans,
that fraction increases to more than 25% for upwelling areas and
to 35% for temperate continental shelf systems. For about one-
sixth of the world’s population (primarily developing nations),
the oceans provide at least 20% of their animal protein. Many of
the fisheries that depend upon the oceanic primary productivity
are unsustainable. Although the primary causes for a decline in
fish populations are predation and poor food supply for larvae,
overfishing, increased water temperature, pollution and disease,
and/or exposure to increased UV-B radiation may contribute
to that decline. The eggs and larvae of many fish are sensitive
to UV-B exposure (Fig. 4). However, imprecisely defined habitat
characteristics and the unknown effect of small increases in UV-B
exposure on the naturally high mortality rates of fish larvae are
major barriers to a more accurate assessment of effects of ozone
depletion on marine fish populations.

Visual predators, including most fish, are necessarily exposed
to damaging levels of solar UV radiation. Skin and ocular
components can be damaged by UV,336 but large differences are

Fig. 4 Fish eggs and larvae are specifically prone to UV-B radiation.
Salmon Alevin larva has grown around the remains of the yolk sac. In
about 24 h it will be a fry without yolk sac (courtesy Uwe Kils).

found between different species.337 Coral reef fishes can adapt to
the UV stress by incorporating UV-absorbing substances, which
they acquire through their diet, into their eyes and epidermal
slime.338 Exposure to solar radiation induced “suntanning” in red
seabream. Histological, colorimetric and chemical assays showed
that the sun-exposed fish had up to five times higher concentrations
of melanin.339 In addition to direct effects, including damage to
biological molecules such as DNA and proteins and the generation
of reactive oxygen species, photoactivation of organic pollutants
and photosensitization may be detrimental. The damaging effects
on eggs and larval stages may be enhanced by polycyclic aromatic
hydrocarbons (PAHs) such as retene, which is a pollutant from
pulp and paper mills.340

In goldfish, embryos are prone to UV effects during early
development341 and produce CPDs under UV radiation. These
are more efficiently repaired in the presence of light.342 Solar UV
radiation has been shown to induce DNA damage in the eggs and
larvae of the Atlantic cod,296 where larvae were more sensitive than
eggs. Artificial UV causes massive apoptosis in larval embryos
of Japanese flounders.343 Studies addressing biological weighting
functions indicated a strong sensitivity towards solar UV-B. CPD
loads as low as 10 per megabase DNA resulted in approximately
10% mortality. Use of video taping and measurement of oxygen
consumption showed sublethal effects of UV radiation in juvenile
rainbow trout344 Under worst-case scenarios (60% ozone loss,
sunny weather and low water turbulence), solar UV-B eliminated
buoyancy and caused mortality within 1 or 2 days.

Fish spawning depth strongly correlates with UV exposure.
In-situ incubation experiments have shown that in a highly UV
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transparent lake 100% of yellow perch eggs (Perca flavescens) are
killed before hatching when exposed to full solar UV.345 In this
same lake 92% of eggs are spawned at depths greater than 3 m,
while in a nearby lake with low UV transparency 76% of eggs were
spawned at depths shallower than 1 m. It is not known whether the
fish are able to detect and avoid the high UV at shallower depths
in the high UV lake or whether this spawning pattern is due simply
to differential survival. In either case, the deeper spawning depths
place the eggs in colder water where it takes them much longer to
hatch compared to eggs spawned in the warm surface waters. A
similar phenomenon has been observed in bluegill larvae (Lepomis
macrochirus) in a UV-transparent lake where in 19% of nests the
estimated UV-induced mortality of larvae exceeds 25%. Most nests
are exposed to relatively low UV levels because they are either
located at deeper depths or under overhanging branches.346 In fish
aquaculture, specific measures are introduced, such as installing
UV sunscreens to avoid UV damage to larval fish in the usually
shallow habitats.347

Other aquatic animals

Early life stages of marine organisms, particularly eggs and larvae,
are vulnerable to solar UV-B radiation. Rocky shore molluscs
show an increased mortality and retarded development upon UV
exposure. These detrimental effects are synergistically enhanced
in the presence of other stress factors such as high temperatures
or salinity, pointing to strong underestimation of the ecological
impacts of climate change by not accounting for the complex
interactions among such environmental variables as temperature,
salinity and oxygen availability.348 Desiccation enhances mortality
and negatively affects development in encapsulated embryos of
rocky shore gastropods.349

The amphipod Amphitoe valida has high concentrations of
MAAs and consequently low mortality while the isopod Idothea
baltica has low MAA concentrations and shows high mortality.
However, the latter species deposits all available MAAs into the
eggs and embryos conferring protection to the progeny.350

Conclusions and consequences

With the recognition of the importance of UV radiation effects
on aquatic ecosystems, there has been a plethora of publications
which show that solar UV can adversely affect aquatic organisms.
These studies document substantial impact on individual species
yet considerable uncertainty remains with respect to assessing
effects on ecosystems. Several studies indicate that the impact of
increased UV radiation would be relatively low when considering
overall biomass response while often, in contrast, the response
is quite marked when the abundance, distribution and effects on
individual species are considered. Ecosystem response to climate
variability involves both synergistic and antagonistic influences
with respect to UV radiation-related effects on aquatic ecosystems
and these influences significantly complicate comprehension and
prediction at the ecosystem level. With respect to assessing UV
radiation-related effects, the influence of climate variability is
often more important via indirect effects such as reduction in
sea ice, changes in water column bio-optical characteristics and
shifts in oceanographic biogeochemical provinces than through
direct effects. Decreases in primary production would result in

reduced sink capacity for atmospheric carbon dioxide, with its
related effects on climate change.

The global decline of amphibian populations seems to be related
to several complex, interacting causes. While one review clearly
rejected any link between solar UV-B radiation and amphibian
decline328 evidence from more than 50 peer-reviewed publications
from around the world shows that dozens of amphibian species
are affected by UV-B.327

A number of new studies have both confirmed and strengthened
evidence that UV-B has an important influence on the community
structure of various aquatic ecosystems. In lakes, phytoplankton
abundance may vary by orders of magnitude depending upon
future climate–DOM–UV interactions.28 Also, lakes often show
thermal stratification and as a consequence plankton commu-
nities show vertical distributions where the UV regime can
strongly control species composition.237 Other evidence supports
the hypothesis that UV influences zooplankton and community
structure and succession during early lake ontogeny.269 Mesocosm
studies, including both phytoplankton and their grazers, suggest
that species composition and population structure may be more
influenced by UV-B than overall algal biomass.186 These results
suggest that UV radiation may be a more important factor than
previously recognized in determining community structure in
aquatic systems.351
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4 D.-P. Häder, UV-B impact on the life of aquatic plants in Modern
Trends in Applied Aquatic Ecology, ed. R. S. Ambasht and N. K.
Ambasht, Kluwer Acadameic/Plenum Publishers, New York, 2003,
pp. 149–172.
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37 A. P. Pérez, M. M. Diaz, M. A. Ferraro, G. C. Cusminsky and H. E.
Zagarese, Replicated mesocosm study on the role of natural ultraviolet
radiation in high CDOM, shallow lakes, Photochem. Photobiol. Sci.,
2003, 2, 118–123.

38 H. J. De Lange, D. P. Morris and C. E. Williamson, Solar ultraviolet
photodegradation of DOC may stimulate freshwater food webs,
J. Plankton Res., 2003, 25, 111–117.

39 L. A. Molot, W. Keller, P. R. Leavitt, R. D. Robarts, M. J. Waiser,
M. T. Arts, T. A. Clair, R. Pienitz, N. D. Yan, D. K. McNicol, Y. T.
Prairie, P. J. Dillon, M. Macrae, R. Bello, R. N. Nordin, P. J. Curtis,
J. P. Smol and M. S. V. Douglas, Risk analysis of dissolved organic
matter-mediated ultraviolet B exposure in Canadian inland waters,
Can. J. Fish. Aquat. Sci., 2004, 61, 2511–2521.

40 T. Tulonen, Role of allochthonous and autochthonous dissolved organic
matter (DOM) as a carbon source for bacterioplankton in boreal humic
lakes, Dissertation Thesis, University of Helsinki: Helsinki, Finland,
2004.

41 S. E. G. Findlay and R. L. Sinsabaugh, Aquatic Ecosystems. Interac-
tivity of Dissolved Organic Matter, Academic Press,Amsterdam, 2003.

42 S. Sobek, G. Algesten, A.-K. Bergström, M. Jansson and L. J. Tranvik,
The catchment and climate regulation of pCO2 in boreal lakes, Global
Change Biol., 2003, 9, 630–641.

43 A. M. Anesio and W. Granéli, Increased photoreactivity of DOC by
acidification: implications for the carbon cycle in humic lakes, Limnol.
Oceanogr., 2003, 48, 735–744.

44 P. Porcal, J. Hejzlar and J. Kopcek, Seasonal and photochemical
changes of DOM in an acidified forest lake and its tributaries, Aquat.
Sci., 2004, 66, 211–222.

45 R. G. Qualls and C. J. Richardson, Factors controlling concentration,
export, and decomposition of dissolved organic nutrients in the
Everglades of Florida, Biogeochemistry, 2003, 62, 197–229.

46 J. L. Klug, Positive and negative effects of allochthonous dissolved
organic matter and inorganic nutrients on phytoplankton growth,
Can. J. Fish. Aquat. Sci., 2002, 59, 85–95.

47 I. Obernosterer and R. Benner, Competition between biological and
photochemical processes in the mineralization of dissolved organic
carbon, Limnol. Oceanogr., 2004, 49, 117–124.
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Differential sunlight sensitivity of picophytoplankton from surface
mediterranean coastal waters, Appl. Environ. Microbiol., 2005, 71,
2154–2157.

77 P. Boelen, A. F. Post, M. J. W. Veldhuis and A. G. J. Buma, Diel patterns
of UVBR-induced DNA damage in picoplankton size fractions from
the Gulf of Aqaba, Red Sea, Microb. Ecol., 2002, 44, 164–174.

78 C. Sobrino, O. Montero and L. M. Lubián, UV-B radiation increases
cell permeability and damages nitrogen incorporation mechanisms in
Nannochloropsis gaditana, Aquat. Sci., 2004, 66, 421–429.
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responses of Nostoc sphaeroides and Arthrospira platensis to solar
ultraviolet radiation exposure, J. Appl. Phycol., 2006, 18, 57–66.

92 S. Rajagopal, C. Sicora, Z. Várkonyi, L. Mustárdy and P.
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Effects of UV and visible light on cyanobacteria at the cellular level,
Photochem. Photobiol. Sci., 2002, 1, 553–559.

98 J.-C. Cadoret, B. Rousseau, I. Perewoska, C. Sicora, O. Cheregi, I. Vass
and J. Houmard, Cyclic nucleotides, the photosynthetic apparatus and
response to UV-B stress in the cyanobacterium Synechocystis sp. PCC
6803, J. Biol. Chem., 2005, 280, 33935–33944.

99 M. Ehling-Schulz, S. Schulz, R. Wait, A. Görg and S. Scherer, The
UV-B stimulon of the terrestial cyanobacterium Nostoc commune
comprises early shock proteins and late acclimation proteins, Mol.
Microbiol., 2002, 46, 827–843.

100 Y.-Y. He, M. Klisch and D.-P. Häder, Adaptation of cyanobacteria
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algae, Curr. Top. Plant Biol., 2002, 3, 113–120.

157 C. A. Llewellyn and D. S. Harbour, A temporal study of mycosporine-
like amino acids in surface water phytoplankton from the English
Channel and correlation with solar irradiation, J. Mar. Biol. Assoc.
U.K., 2003, 83, 1–9.

158 M. Klisch, Induktion von UV-Schirmpigmenten in marinen Dinoflag-
ellaten Dissertation Thesis, Friedrich-Alexander University Erlangen-
Nürnberg, Germany, 2002.

159 H. Taira, S. Aoki, B. Yamanoha and S. Taguchi, Daily variation in
cellular content of UV-absorbing compounds mycosporine-like amino
acids in the marine dinoflagellate Scrippsiella sweeneyae, J. Photochem.
Photobiol., B, 2004, 75, 145–155.

160 R. E. Moeller, S. Gilroy, C. E. Williamson, G. Grad and R.
Sommaruga, Dietary acquisition of photoprotective compounds
(mycosporine-like amino acids, carotenoids) and acclimation to
ultraviolet radiation in a freshwater copepod, Limnol. Oceanogr., 2005,
50, 427–439.

161 I. Laurion, F. Blouin and S. Roy, Packaging of mycosporine-like
amino acids in dinoflagellates, Mar. Ecol.: Prog. Ser., 2004, 279, 297–
303.

162 R. P. Sinha, A. Gröniger, M. Klisch and D.-P. Häder, Ultraviolet-B
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K. Hämeri, L. Pirjola, M. Kulmala, S. G. Jennings and T. Hoffmann,
Marine aerosol formation from biogenic iodine emissions, Nature,
2002, 417, 632–636.

179 A. V. Parisi and N. Downs, Variation of the enhanced biologically
damaging solar UV due to clouds, Photochem. Photobiol. Sci., 2004,
3, 643–647.

180 K. Meiners, Sea-ice communities: structure and composition in Baltic,
Antarctic and Arctic seas, Dissertation Thesis, Christian-Albrechts-
University, Kiel, Germany, 2002.

181 T. Mock and D. N. Thomas, Recent advances in sea-ice microbiology,
Environ. Microbiol., 2005, 7, 605–619.

182 K. R. Arrigo and D. N. Thomas, Large scale importance of sea ice
biology in the Southern Ocean, Antarctic Sci., 2004, 16, 471–486.

183 R. D. Vinebrooke, D. W. Schindler, D. L. Findlay, M. A. Turner,
M. Paterson and K. H. Mills, Trophic dependence of ecosystem
resistance and species compensation in experimentally acidified Lake
302S (Canada), Ecosystems, 2003, 6, 101–113.

184 C. Belzile, S. Demers, G. A. Ferreyra, I. Schloss, C. Nozais, K. Lacoste,
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189 E. Ferrero, M. Eöry, G. Ferreyra, I. Schloss, H. Zagarese, M. Vernet
and F. Momo, Vertical mixing and ecological effects of ultraviolet
radiation in planktonic communities, Photochem. Photobiol., 2006,
82, 898–902.
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235 M. Arróniz-Crespo, E. Núnez-Olivera and J. Martı́nez-Abaigar, A
survey of the distribution of UV-absorbing compounds in aquatic
bryophytes from a mountain stream, Bryologist., 2004, 107, 202–
208.

236 C. M. Duarte, The future of seagrass meadows, Environ. Conserv.,
2002, 29, 192–206.

237 R. Cozza, A. Chiappetta, M. Petrarulo, A. Salimonti, F. Rende,
M. B. Bitonti and A. M. Innocenti, Cytophysiological features of
Posidonia oceanica as putative markers of environmental conditions,
Chem. Ecol., 2004, 20, 215–223.
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