
ww.elsevier.com/locate/rse
Remote Sensing of Environmen
Estimation and vicarious validation of urban vegetation abundance by

spectral mixture analysis

Christopher Small a,*, Jacqueline W.T. Lu b

a Lamont Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
b City of New York Parks and Recreation, Central Forestry and Horticulture, Olmsted Center, Flushing Meadow Corona Park, Flushing, NY 11368, USA

Received 31 May 2005; received in revised form 18 October 2005; accepted 20 October 2005
Abstract

Both moderate and high spatial resolution imagery can be used to quantify abundance and distribution of urban vegetation for urban landscape

management and to provide inputs to physical process models. Estimation of vegetation fraction from Landsat ETM+ and Quickbird allows for

operational monitoring and reconnaissance at moderate resolution with calibration and vicarious validation at higher resolution. Establishing a

linear correspondence between ETM-derived vegetation fraction and Quickbird-derived vegetation fraction facilitates the validation task by

extending the spatial scale from 30�30 m to a more manageable 2.8�2.8 m. A comparative analysis indicates that urban reflectance can be

accurately represented with a three component linear mixture model for both Landsat ETM+ and Quickbird imagery in the New York metro area.

The strong linearity of the Substrate Vegetation Dark surface (SVD) mixture model provides consistent estimates of illuminated vegetation

fraction that can be used to constrain physical process models that require biophysical inputs related to vegetation abundance. When Quickbird-

derived 2.8 m estimates of vegetation fraction are integrated to 30 m scales and coregistered to Landsat-derived 30 m estimates, median estimates

agree with the integrated fractions to within 5% for fractions >0.2. The resulting Quickbird-ETM+ scatter distribution cannot be explained with

estimate error alone but is consistent with a 3% to 6% estimation error combined with a 17 m subpixel registration ambiguity. The 3D endmember

fraction space obtained from ETM+ imagery forms a ternary distribution of reflectance properties corresponding to distinct biophysical surface

types. The SVD model is a reflectance analog to Ridd’s V–I–S land cover model but acknowledges the fact that permeable and impermeable

surfaces cannot generally be distinguished on the basis of broadband reflectance alone. We therefore propose that vegetation fraction be used as a

proxy for permeable surface distribution to avoid the common erroneous assumption that all nonvegetated surfaces along the gray axis are

completely impermeable. Comparison of mean vegetation fractions to street tree counts in New York City shows a consistent relationship between

minimum fraction and tree count. However, moderate and high resolution areal estimates of vegetation fraction provide complementary

information because they image all illuminated vegetation, including that not counted by the in situ street tree inventory.
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1. Introduction

Vegetation abundance and distribution are primary determi-

nants of urban environmental conditions. In addition to its

obvious aesthetic importance, vegetation exerts a strong

influence on mass and energy fluxes through the urban

environment by modulating evapotranspiration and absorption

of solar radiation. Accurate mapping and monitoring of
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vegetation distribution and condition is also central to the

understanding of urban ecosystems, including its role in

mitigating air pollution and reducing the urban heat island

effect. Resource managers can also use information on the

abundance, condition and spatial distribution of urban vegeta-

tion for park and natural area management and urban planning.

While in situ data collection is the primary means of measuring

and monitoring urban vegetation, remotely sensed observations

can provide valuable complements to traditional field observa-

tions. Accurate, detailed maps of urban vegetation also have

application in regional scale models of climatic, hydrologic and

ecologic processes.
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New York City, most famous for its skyscrapers and worldly

population, is also home to an estimated 5.2 million trees

(Nowak & Crane, 2002). New York City’s vegetation is

comprised of a patchwork of remnant forests, inherited estates,

neighborhood parks and playgrounds, green streetscapes,

parkways and private backyards and roof gardens. New York

City Parks and Recreation (Parks) has jurisdiction for over half

of the estimated 5 million total trees in the city. From 1995 to

1996, Parks mobilized over 700 volunteers to conduct a

comprehensive census of all the street trees in New York City.

The census counted over 498,000 street trees in New York City,

consisting of approximately 70 different varieties. The vast

majority of trees, however, are comprised of a small number of

species; over 40% of the street tree population consists of just

two species, Norway maple (Acer platanoides) and London

plane tree (Platanus acerifolia). New York City’s street trees

are relatively small, with almost 60% measuring less than 12

in. diameter at breast height (Watt, 1998). However, many

other types of vegetation in New York City, managed or

impacted by Parks and at least another dozen city, state, and

federal agencies and private actors, are not well characterized

through on the ground inventories. Management of New York’s

trees by Parks relies on the street tree census to represent the

spatial distribution and health of its vegetative assets. Remotely

sensed quantitative estimates of urban vegetation abundance

and distribution could potentially provide a valuable comple-

ment to tree inventories and in situ monitoring. However, the

operational use of remotely sensed estimates requires a robust

estimation methodology and a well-defined validation proce-

dure to determine the accuracy of the estimates.

A primary requirement for operational use of remotely

sensed vegetation abundance estimates is that they provide

physical units that can be compared directly with other

measures of vegetation abundance and condition. Spectral

Mixture Analysis (SMA) satisfies this requirement by provid-

ing pixel-scale estimates of areal abundance of spectral

endmembers (Adams et al., 1986; Smith et al., 1990). In

recent years SMA has been used for a variety of urban land

cover mapping applications (e.g. Kressler & Steinnocher, 1996;

Small, 2001a; Small & Miller, 1999; Rashed et al., 2001, 2002;

Wu & Murray, 2003; Weng et al., 2004). In comparison to

vegetation indices (e.g. Normalized Difference Vegetation

Index (NDVI)), SMA offers the advantage of providing

estimates of areal vegetation abundance that can be compared

directly to other measures of vegetation cover per unit area.

The SMA methodology has been rigorously defined (Adams et

al., 1986; Gillespie et al., 1990; Sabol et al., 1992; Settle &

Drake, 1993; Smith et al., 1990) and has been shown to be

sufficiently stable for multitemporal change analyses (Adams

et al., 1995; Elmore et al., 2000; Small, 2002b). In spite of its

increasingly widespread use, most spectral mixture analyses do

not validate the endmember fraction estimates they produce.

Elmore et al. (2000) devised a rigorous field validation

methodology based on point frame transect measurement of

individual plants in a semiarid environment but the procedure

is very labor intensive and not suitable for environments

containing large trees. Small (2001a) proposed a methodology
for high spatial resolution vegetation abundance validation

from aerial photographs but the procedure relies on manual

selection of specific validation sites and is also somewhat labor

intensive. In light of the current availability of calibrated high

(<5 m) resolution multispectral imagery from Ikonos and

Quickbird, the potential for quantitative validation of fractional

abundance estimates has increased considerably since the time

these earlier studies were conducted. High spatial resolution

imagery also provides a means to examine the structural

characteristics of moderate resolution (¨20–40 m) targets as

well.

The objectives of this study are to provide operational

procedures for moderate resolution vegetation fraction estima-

tion and validation and to examine some of the factors that

limit the use of vegetation fraction estimates for urban

applications. Rigorous calibration and validation of image-

derived quantities generally requires direct field measurements

of the variable being estimated. However, establishing a linear

correspondence between ETM-derived vegetation fraction and

Quickbird-derived vegetation fraction can facilitate the valida-

tion task by extending the spatial scale from 30�30 m to a

more manageable 2.8�2.8 m. Since vegetation fraction is

much easier to validate at 2.8 than 30 m scales, we refer to this

process as vicarious validation. In the first part of the analysis

we summarize the procedure used to derive vegetation fraction

estimates from Landsat and Quickbird imagery. The theoretical

basis and stability of the procedure used here are explained in

greater detail in Small (2001a) and Small (2003) as well as

many earlier works cited therein. Here we provide a summary

of the procedure with emphasis on how it can be made

operational. In the second part of the analysis we quantify the

agreement between the moderate and high resolution estimates

and investigate the effects of estimate error and spatial

misregistration. The discussion focuses on the physical

interpretation of vegetation fraction estimates and comparison

to in situ measures of urban vegetation abundance. The results

of the analysis highlight factors affecting vicarious validation

of Landsat mixture fractions with Quickbird fractions and

provide quantitative estimates of the magnitude of different

sources of error in the process.

2. Data

In this study we derive moderate resolution estimates of

aggregate vegetation fraction from Landsat imagery and

quantify the correspondence between these estimates and

integrated vegetation fraction measurements derived from high

resolution Quickbird imagery (Fig. 1). Both images used in this

study were acquired in August 2002. At the time, the New

York metro area was experiencing drought conditions follow-

ing several years of below average precipitation. Although

some smaller trees were experiencing premature senescence by

August, the vegetation abundance within the study area was

equivalent to full leaf-on conditions at the time that both

images were acquired. We do not believe that the vegetation

cover changed significantly between the times the images were

acquired. The Landsat ETM+ image (p. 14, r. 32) used in this



Fig. 1. False color imagery of the New York metro area in August 2002.
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study was acquired on 14 August 2002 at ¨9:30 EDT. Image

DNs were converted to exoatmospheric reflectance units as

described by Markham and Barker (1986, 1987) and in the

Landsat 7 Users Handbook (http://ltpwww.gsfc.nasa.gov/IAS/

handbook/handbook_toc.html). No atmospheric correction was

applied. The Quickbird imagery was acquired on 2 August

2002 at 09:48 EDT from an elevation angle of 79.5- with a

solar elevation of 68-. Image DNs were converted to at-sensor

radiance using parameters provided by Digital Globe. Spatial

accuracy of the georegistered images were verified to be within

31 m by comparison with 48 validation sites derived from a

2001 Garmin 12 Map handheld GPS receiver. Coregistration

accuracy of the two images is discussed in detail below.

3. Spectral mixture analysis and endmember selection

Spectral Mixture Analysis (SMA) is a methodology

whereby an observed radiance is modeled as a linear mixture

of spectrally pure endmember radiances. Linear mixture

models are based on the observation that, in many situations,

radiances reflected from surfaces with different ‘‘endmember’’

reflectances mix linearly in proportion to the area of each

endmember within the Instantaneous Field Of View (IFOV)

(Johnson et al., 1983; Singer, 1981; Singer & McCord, 1979).

This observation has made possible the development of a

systematic methodology for spectral mixture analysis (Adams
et al., 1993, 1986; Gillespie et al., 1990; Sabol et al., 1992;

Smith et al., 1990) in which land surface reflectance variations

are described by a set of endmember fraction images

representing spatial variations in the areal abundance of each

endmember. Although the physical process represented by the

mixture model corresponds to the measurement of a mixed

radiance within the sensor IFOV, the model can also be applied

to exoatmospheric reflectances because the conversion equa-

tions are linear. If a limited number of spectrally distinct

endmembers can be found it is possible to define a mixing

space within which mixed pixel spectra can be described as

linear mixtures of the endmember spectra. A mixing space is

analogous to a spectral feature space but is generally

represented with low dimensional projections of the principal

components (PCs) of the image rather than the observed

radiance bands. Representing a multispectral feature space with

the low order PCs allows the topology of the space to render as

a 3D construct. With Landsat imagery, the three primary PCs

generally contain more than 95% of the variance in the image

(Small, 2004).

Given sufficient spectral resolution, a system of linear

mixing equations and endmembers can be defined and the best

fitting combination of endmember fractions can be estimated

for each of the observed reflectance spectra. The solution to the

linear mixing problem can be cast as a linear inverse problem

in which the system of mixing equations is inverted to yield

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html
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estimates of the endmember fractions that best fit the observed

mixed reflectances (Boardman, 1993; Boardman & Kruse,

1994; Settle & Drake, 1993). It is important to note that even

when the surface within the Ground Instantaneous Field Of

View (GIFOV) is not a mixture of the unique, spectrally pure

endmember materials, it can be represented as such a mixture if

it lies within the bounds of the mixing space. Because the

methodology provides a general physical representation of

mixed reflectances, it has proven successful for a wide variety

of quantitative applications with multispectral imagery (e.g.

Adams et al., 1993, 1986; Elmore et al., 2000; Pech et al.,

1986; Roberts et al., 1998a; Smith et al., 1990).

The feasibility of the linear mixture model depends on the

topology of the spectral mixing space in which the observed

spectra reside. The mixing space is the N dimensional cloud of

image pixels corresponding to all of the image spectra to be

represented by the mixture model. The mixing space can be

represented graphically as scatterplots of the various band

combinations corresponding to different 2D projections of the

N dimensional cloud. The dimensionality of the problem can

be reduced by focusing on the dimensions of the mixing space

that contain the majority of the image variance. A principal
Fig. 2. Spectral mixing space and endmembers for the NYC ETM+ image. Density

space defined by the first three principal components containing >95% of the ima

albedo, vegetation and dark surface endmembers at the apexes. The top and end vie

planar along the mixing continuum extending to the vegetation endmember. Mos

endmembers. Endmember spectra are associated with highly reflective surfaces

manicured grass areas (Central Park Great Lawn).
component transformation can be used to reorient (rotate) the

mixing space and provide quantitative estimates of the variance

accounted for by each principal component (PC). Principal

component analyses of Landsat and Ikonos imagery indicate

that >90% of image variance can generally be represented with

the three primary PCs of the mixing space (Small, 2001b). This

allows us to represent the topology of the mixing space with

three orthogonal projections of the 3D pixel cloud formed by

the three primary PCs. The mixing space of the NYC ETM+

imagery is shown in Fig. 2. In this case, the triangular topology

of the mixing space suggests that the mixed reflectances

contained within can be represented by a three endmember

mixing model. The apexes of the 3D mixing space correspond

to the spectral endmembers while the mixed pixel reflectances

lie within a convex hull circumscribing the apexes (Boardman,

1993). The reflectance vectors residing at the three apexes of

the NYC ETM+ mixing space are shown in Fig. 2d. These

endmember spectra correspond to High Albedo Substrate,

Vegetation and Dark surfaces. The triangular topology of the

NYC ETM+ mixing space is very similar to that of other urban

areas worldwide (Small, 2002a, 2005) as well as the global

ETM+ mixing space (Small, 2004). The straight edges
shaded scatterplots show the distribution of pixels within the spectral mixing

ge variance. The side view shows a triangular mixing space bounded by high

ws show the third dimension of the mixing space indicating that it is primarily

t of the nonlinearity is associated with the gray axis spanning the other two

(e.g. warehouse roofs), clear deep water (Central Park Reservoir) and large
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extending from the Dark surface endmember indicate that

binary mixing between the Dark and Vegetation endmembers is

strongly linear (Fig. 2a). The mixing continuum between the

Dark and High Albedo endmembers also appears to be linear in

the side view (Fig. 2a) but the end view of the mixing space

reveals convexity in the third dimension suggesting a small

degree of nonlinear mixing along this ‘‘gray axis’’ (Fig. 2b).

The concave edge of the mixing space between the Vegetation

and High Albedo Substrate endmembers is consistent with the

linear model although the concavity suggests that mixtures of

these two endmembers always contain some amount of the

Dark endmember also (Fig. 2a). Pure binary mixtures of the

vegetation and substrate endmembers would fall along a

straight line between these apexes of the mixing space.

The selection of appropriate spectral endmembers is essential

to the accuracy of the mixture model. The sensitivity of fraction

estimates to endmember variability in broadband mixing spaces

is not as great as in hyperspectral mixing spaces but it can have a

significant impact on the accuracy of the results. The

methodology described here relies on manual selection of

endmember spectra from the apexes of the mixing space. This is

feasible for vegetation fraction estimation because broadband

mixing spaces invariably taper approaching the vegetation
Fig. 3. Endmember fractions and RMS error for the ETM+ three endmember linea

indicated by lighter shading. A 2% linear stretch has been applied to each image. His

RMS error (0.03 to 0.06) correspond to partially exposed soil that is not represent

vegetation abundance.
endmember. Analyses of a wide variety of Landsat and Ikonos

mixing spaces consistently show well defined vegetation apexes

with little variability (Small, 2003, 2004, 2005). The same is

generally true of the dark surface endmember, although

sometimes to a lesser extent if multiple spectrally distinct water

bodies, shadows and absorptive surfaces are present in the

scene. Selection of the high albedo substrate endmember

presents the greatest challenge because of the frequently

divergent topology of broadband mixing spaces in the vicinity

of high albedo endmembers. Fortunately, vegetation fractions

are relatively insensitive to moderate variability at high fractions

of the high albedo substrate endmember because purely binary

mixing between vegetation and high albedo substrate is

extremely rare (Small, 2004). The ubiquitous presence of

shadow in partially vegetated landscapes generally results in

ternary mixing between the vegetation, substrate and shadow.

The approach used here selects the most extreme (i.e. distant

from the dark surface apex of the mixing space) high albedo

substrate spectrum that lies closest to the linear trend of the gray

axis spanning the dark surface and high albedo substrate

endmember. The same approach is used to select the vegetation

endmember, although it is less critical because the mixing space

tapers approaching the vegetation apex resulting in negligible
r mixture model for the New York metro area. Higher fractions (and error) are

tograms of each fraction are given in Fig. 4. Spatially contiguous areas of higher

ed by the three endmember model. Note the neighborhood scale variations in



C. Small, J.W.T. Lu / Remote Sensing of Environment 100 (2006) 441–456446
variability of the vegetation endmember. The advantage of

manually selecting the endmember spectra from the mixing

space is that it provides an opportunity to determine the inherent

variability in the spectra near the apex of the mixing space. High

dimensional hyperspectral imagery generally requires numeri-

cal and statistical approaches to endmember selection (e.g.

Asner, 1998; Asner and Lobell, 2000; Roberts et al., 1998b) but

the low dimensionality of multispectral imagery allows the

analyst to mitigate endmember variability directly by selecting

the endmembers that are consistent with the binary mixing

continua among endmembers while avoiding the spurious

spectra that often reside near the apexes of the mixing space.

Endmember fractions are estimated with a constrained least

squares inversion following the procedure described in detail by

Small (2001a). The resulting fraction and RMS error distribu-

tions–shown in Figs. 3 and 4–are very similar to those

obtained by Small (2001a, 2001b). This is expected given the

similarity in the study area and endmember spectra. The RMS

error image shows land cover types that are not well represented

in the model. As in the previous study, the largest misfits are

associated with areas of exposed soil and isolated high albedo

targets that are spectrally distinct from the high albedo substrate

endmember. This is consistent with the lack of a second

substrate endmember in the model and the fact that the mixing
Fig. 4. RMS error and endmember fraction distributions for the ETM+ linear mix

fractions of dark and vegetation endmembers indicating that the linear model is well

high albedo endmember because a single high albedo endmember does not represe

fractions and the generally low (<0.03) RMS error for the NYC ETM+ image.
space diverges approaching the single high albedo substrate

endmember (as seen in Fig. 2c). Fig. 4 shows RMS error

diminishing with increasing fractions of Dark and Vegetation

endmembers. This indicates that the inverse problem is well

posed with respect to vegetation fraction estimation. RMS error

is generally less than 0.03 reflectance units, suggesting that the

3 endmember linear model is capable of replicating the

observed mixed reflectances quite closely. This does not,

however, guarantee that the fraction estimates are accurate.

The accuracy must be determined through validation.

4. Vicarious validation and calibration

We attempt to validate the ETM+ vegetation fraction

estimates by quantifying their degree of correspondence to

vegetation fraction estimates derived from Quickbird multi-

spectral imagery. For estimates of areal vegetation abundance,

the 2.8 m spatial resolution of the Quickbird sensor allows it to

image the individual components of the urban mosaic at

significantly higher spatial resolution than the 20 to 30 m

characteristic scale estimated for the New York urban mosaic

(Small, 2003). This is why individual features like buildings,

sidewalks, streets and trees can be identified in Quickbird

imagery. The 2.8 m resolution is more than adequate to image
ture model. Density shaded scatterplots show diminishing error for increasing

posed for these endmembers. RMS error increases for increasing fractions of the

nt all of these reflectances accurately. Histograms show the dominance of dark
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medium to large tree crowns and to detect the presence of fairly

small street trees. For the size distribution of trees in the study

area, the Quickbird sensor is able to image all components of

the urban vegetation that make a significant contribution to the

mosaic imaged by the ETM+ sensor. At the scale of the ETM+

GIFOV, each 2.8 m Quickbird pixel represents less than 1% of

the area within the 30 m Full Width Half Max of the ETM+

point spread function. This is more than adequate to represent

the spatial scale of the dominant targets responsible for the

multiple scattering that is the primary source of nonlinear

mixing within the ETM+ GIFOV. Because nonlinear mixing is

the primary source of error in this estimation problem, we

consider the spatial oversampling provided by the Quickbird

data to be well suited to address the fundamental question in

the mixing problem. The question is whether inversion of the

linear mixing model yields areal vegetation estimates that are

consistent with actual measurements of vegetated area. Quick-

bird easily resolves the smallest individual vegetated compo-

nents of the urban mosaic so the sum of the 2.8 m vegetation

fractions within the ETM+ GIFOV gives a measure of the

vegetated area of each pixel.

The validity of using high resolution vegetation fractions to

validate moderate resolution fractions therefore depends on

whether there is a consistent bias in the linear mixing model
Fig. 5. Spectral mixing space and endmembers for the NYC Quickbird image. The si

and dark surface endmembers. The top and end views show the third dimension of th

extending to the vegetation endmember and that most of the nonlinearity is associa

spectrally distinct.
that corrupts both the moderate and high resolution estimates in

such a way that they are mutually consistent but consistently

wrong. This suggests a telescoping calibration/validation

strategy that could be extended to sub-meter scales with direct

field measurements. For mature deciduous trees like those in

New York, this would require a separate experiment that is

beyond the scope of the present analysis. For the purposes of

this study, we will consider the degree of correspondence

between the ETM+ and Quickbird vegetation fractions to be an

adequate metric for the accuracy of the ETM+ vegetation

fractions. Because the mixing problem is well posed for

Quickbird and because we have field validated the Quickbird

fractions in Manhattan we will refer to the integrated Quickbird

vegetation fractions as measurements at 30 m scales. We feel

this is justified because the Quickbird resolves all areally

significant components of urban vegetation at 2.8 m resolution

and the integrated fraction is the total measure of the more

spatially detailed vegetation distribution.

The characteristics of the Quickbird mixing space are

similar to the ETM+ mixing space described above and almost

identical to those of the Ikonos MSI mixing space described in

detail by Small (2003). The Quickbird mixing space and

spectral endmembers for the NYC study area are shown in Fig.

5. The Quickbird mixing space is similar to the ETM+ mixing
de view shows the familiar triangular mixing space with high albedo, vegetation

e mixing space indicating that it is primarily planar along the mixing continuum

ted with the gray axis spanning the other two endmembers. Sand ballfields are
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space in both dimensionality, linearity and endmembers. The

most obvious difference is the greater dominance of binary

mixing between the dark surface endmember and the other two.

This is expected as the higher spatial resolution of the

Quickbird imagery will result in less mixing between distinct

components of the urban mosaic (streets, roofs, trees, etc.) but

does not eliminate the finer scale shadowing from textural

features and illumination differences that modulate the bright-

ness of individual components of the mosaic. Differences in

illumination and texture (resulting in internal shadowing) are

manifested as binary mixtures between the dark surface and the

other two endmembers. This is why high resolution mixing

spaces are more concave and tend to resemble distinct binary

mixing continua radiating outward from the dark surface

endmember.

The procedure used to estimate vegetation fractions from the

Quickbird imagery is analogous to that described above for the

ETM+ imagery. Spectral endmembers are selected from the

apexes of the mixing space and verified with field visits. The

vegetation endmember corresponds to several patches of

recently planted turf on the Great Lawn and well-maintained

bowling greens in Central Park. We consider dense, healthy

turf equivalent to a 100% vegetated surface with negligible

shadow. Quickbird-derived vegetation fractions for the entire

validation area and a full resolution subset are shown in Fig. 6.

Note the variability within individual tree crowns and within

the grass patches having higher vegetation fractions. These are

consequences of internal shadowing within the crowns and

spatial variations in the health and density of the grass cover.
Fig. 6. Quickbird-derived vegetation fraction for central Manhattan and adjacent area

the right image shows a 1.5�2 km subset at full resolution. Gray shading shows v

Park (near center of left image) are calibrated as 100% illuminated vegetation.
The unit sum constrained least squares inversion of the

Quickbird data results in RMS misfits of less than 2% of

red-edge amplitude for greater than 95% of image pixels. The

red-edge amplitude is used as a metric here because it generally

spans the range of reflectances observed in a vegetation

spectrum. As in the ETM+ inversion, RMS error diminishes

with increasing vegetation fraction. This is consistent with the

strongly linear mixing and tapering of the mixing space

approaching the vegetation endmember.

The ETM+ vegetation fraction estimates are validated by

direct comparison to the Quickbird estimates. In order to

compare the two vegetation fractions it is necessary to

duplicate the sampling operation that occurs within the

ETM+ sensor. We follow the procedure used by Small

(2001a) in which the 2.8 m vegetation fractions are convolved

with the point spread function (spatial response) of the ETM+

sensor and resampled at 30 m resolution. We use an

axisymmetric 2D equivalent of the line spread function

published by Markham (1985) approximated by a Gaussian

kernel with a 30 m Full Width Half Max. The filtered and

resampled 30 m vegetation fractions are shown alongside the

ETM+ estimates in Fig. 7.

Convolution and resampling of the 2.8 m vegetation

fractions at 30 m resolution makes it possible to assess the

geographic coregistration and to compare the moderate

resolution estimates and the high resolution measurements

directly. Comparison of the Quickbird image to the handheld

GPS measurements showed a generally northeastward dis-

placement of 10 to 30 m. This is assumed to be the result of
s. The left image shows the entire scene (¨7�10 km) at reduced resolution and

egetation fraction between 0 and 0.7. Dense, well-maintained lawns in Central



Fig. 7. Quickbird and Landsat ETM+ 30 m vegetation fraction estimates for central Manhattan and adjacent areas. The Quickbird fractions are derived from 2.8 m

estimates convolved with the ETM+ point spread function and resampled at 30 m resolution. Gray shading shows vegetation fraction between 0 and 0.7. Both images

were acquired under drought conditions.
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error in the Quickbird geolocation and error in the GPS

position estimate related to multipathing and limited satellite

availability within the urban canyons. As this is within the

spatial uncertainty of GPS receiver and the expected geoloca-

tion error of both images, we did not attempt to relocate either

image. Visual comparison of the interactively overlaid 30 m

images showed no evidence for systematic misregistration. A

density shaded scatterplot of the 30 m ETM+ estimates versus

the 30 m resampled Quickbird vegetation fractions is shown in

Fig. 8. The linear correlation coefficient for the 80,850

(245�330) coregistered 30 m pixels is 0.89. Medians and

interquartile ranges calculated at 1% increments indicate that

the ETM+ estimates agree with the Quickbird vegetation

fractions to within 5% for fractions greater than 0.2 and that

50% of ETM+ fractions agree to within 10%. The ETM+

fractions are consistently higher than the Quickbird estimates

for fractions less than 0.2 with the positive bias diminishing

monotonically approaching 0.2. One possible cause for the

consistent positive bias at fractions <0.2 could be the spatial

nonuniformity of the ETM+ point spread function. Scatter

about the 1:1 line increases for fractions up to ¨0.3 and

diminishes for higher fractions.

4.1. Error modeling

We investigate two possible causes for this scatter by

simulating the effects of spatial misregistration and systematic

estimation error. The scatter about the 1:1 line could result from
(1) error in the ETM+ and Quickbird fraction estimates or from

(2) subpixel (<30 m) spatial misregistration between the ETM+

and Quickbird images or from (3) a combination of estimate

error and spatial misregistration. Spatial misregistration of any

pair of images causes the spatial correlation between them to

diminish as the scatter increases with offset between the

images. It is not feasible to derive a simple analytic expression

for the decorrelation because the nature of scatter that results

from the spatial misregistration depends on the actual spatial

distribution of the vegetation in the study area. The effect of

spatial misregistration can however be simulated by introduc-

ing a series of geographic offsets to identical 2.8 m vegetation

fraction images, convolving each image with the ETM+ spatial

response function, resampling each to 30 m resolution and

comparing the correlation of the displaced 30 m images. We

simulated the effects of spatial misregistration for eastward,

northward and northeastward offsets ranging from 2 to 50 m

and compared the resulting scatterplots and linear correlation

coefficients with those estimated for the ETM+ and resampled

Quickbird vegetation fractions. Fig. 9 shows the progressive

decorrelation of both the 2.8 m fractions and the resampled 30

m fractions for different distance and directional offsets. As

expected, the correlation of the 2.8 m fraction images

diminishes rapidly while the smoothing effect of the ETM+

response function reduces the effect of subpixel (<30 m)

offsets by increasing the correlation between adjacent pixels. In

both cases, the northeastward displacements decorrelate more

rapidly than either the northward or eastward displacements



Fig. 9. Decorrelation of identical NYC vegetation fraction images with

increasing offset. The smaller symbols show the decorrelation of the high

resolution 2.8 m Quickbird vegetation fraction with eastward (Dx), northward

(Dy) and diagonal (Dx, Dy) offsets. The larger symbols show the decorrelation

when the high resolution fraction estimates are convolved with the Landsa

ETM+ point spread function and resampled at 30 m resolution. The observed

0.89 correlation could be explained by a ¨25 m lateral or a 17 m diagona

uncertainty in the position of the Landsat image—if the fraction estimates were

in perfect agreement with the high resolution fractions.

Fig. 8. Measured versus estimated vegetation fractions for the New York

validation site. Measured fractions are calculated from 2.8 m Quickbird

estimates integrated to 30 m. Estimated fractions are derived from Landsat

ETM+ estimates coregistered to the resampled Quickbird image. Circles show

median estimated fractions and bars show interquartile ranges in 1% bins.

Darker pixels correspond to larger numbers of 30 m samples. Medians are

within 5% for fractions greater than 0.2. The observed scatter about the 1:1 line

may result from estimation error and/or subpixel image misregistration.
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alone. Together, these simulations suggest that the observed

correlation of 0.89 could be explained by image misregistra-

tions of 16 to 24 m. However, it is unlikely that the scatter

would be caused by spatial misregistration alone because some

amount of estimation error must be expected. A more general

error model incorporates both misregistration and estimation

error.

We simulate the combined effects of spatial misregistration

and estimation error by comparing scatterplots of perturbed

versus unperturbed vegetation fractions. In general, we would

expect some amount of subpixel spatial misregistration in both

northward and eastward directions as well as some amount of

error in the estimation of the ETM+ and Quickbird fractions.

By varying the amount of misregistration and the amount of

estimation error we can compare the dispersion of the resulting

scatterplots with that observed in Fig. 8. The effect of

geolocation error was simulated as described above. In

addition, we simulated the effect of estimation error by adding

specified amounts of normally distributed random noise to each

pixel in the perturbed image. A correlation array of density

shaded scatterplots for a range of spatial offsets and noise

variances is shown in Fig. 10. It is immediately apparent that

the observed tapered dispersion about the 1:1 line seen in Fig.

8 is different from the uniform dispersion resulting only from

the addition of estimation error (column 4 in Fig. 10). The

distribution of scatter in Fig. 8 is most similar to that seen for a

northeastward misregistration of 17 m with less than 3%

estimation error or an 11 m misregistration with less than 6%

estimation error.
5. Discussion

5.1. Reflectance of pervious and impervious surfaces

The Substrate, Vegetation, Dark surface (SVD) reflectance

model used in these spectral mixture analyses represents areal

fractions of three biophysically distinct components of the

urban land surface. Specifically, these are the fraction of

illuminated vegetation, illuminated solid substrate and the

fraction of shadowed and nonreflective surface of all types. The

dark surface endmember can also represent transmissive

surfaces like water. Because so little energy is returned from

dark surfaces the radiance field conceals a fundamental

ambiguity among transmissive surfaces (like clear water) and

low albedo illuminated surfaces (like roofing tar) and

shadowed surfaces of all kinds. However, water can generally

be distinguished from shadow in the mixing space because of

its homogeneity and clustering in the feature space. The

primary ambiguity lies between illuminated low albedo surface

and deeply shadowed surface. Nonetheless, the three end-

member SVD reflectance model does represent the land surface

as independent components of the biophysical landscape with

decidedly different energetic, hydrologic and ecologic proper-

ties. The independence of the SVD fractions in the planar

endmember fraction feature space (Fig. 11a) corresponds to a

ternary abundance diagram when the mixing plane is viewed

orthogonal to the mixing plane (Fig. 11d). This is conceptually

similar to Ridd’s Vegetation–Impervious–Soil (VIS) ternary
t

l



Fig. 10. Simulated effect of spatial misregistration (Dx, Dy) and additive Gaussian error (s) on 30 m vegetation fraction correlation. Each scatterplot shows the

correlation of identical 2.8 m vegetation fraction images subjected to spatial offset and convolved with the ETM+ point spread function. Gaussian error is added after

convolution and resampling. Compare the scatter about the 1:1 diagonal with Fig. 9. The simulation indicates that the observed scatter is consistent with ¨17 m

spatial uncertainty and ¨3% error. Error addition alone does not reproduce the scatter distribution.
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abundance model (Ridd, 1995) for urban land cover—with one

critical distinction. The SVD model represents biophysical

surface reflectance properties while the VIS model represents

biophysical land cover classes. The distinction is important

because the SVD model represents features that can be

distinguished from surface reflectance while the VIS model

represents features that cannot necessarily be distinguished on

the basis of reflectance alone.

Using broadband reflectance data to represent the V–I–S

model is problematic because there is a fundamental ambiguity
between the Impervious and Soil reflectances. As acknowl-

edged in Ridd’s original paper (Ridd, 1995), impervious

surfaces often cannot be determined unambiguously in

reflectance data. This is because impervious substrates do not

have unique optical properties. In fact, many impervious

surfaces (e.g. concrete and cement) are compositionally

equivalent to pervious surfaces (e.g. carbonate mud and sand).

Classifying pixels with high substrate fractions as impervious

may provide reasonable approximations of actual impervious

surface distribution in developed land areas in temperate and



Fig. 11. Endmember fraction space. Density shaded scatterplots show orthogonal projections of the planar triangular feature space of endmember fractions. The side

view illustrates the independence of the Vegetation and Substrate endmembers while the end and top views illustrate the reduction of each with increasing Dark

fraction. In the side view the dark band trending from the vegetation endmember to the gray axis shows the progression from more to less vegetated land cover types.

The oblique perspective (lower right) shows a view perpendicular to the planar cloud of pixels.
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tropical climates where pervious surfaces often tend to be

vegetated and exposed substrate tends to be impervious.

However, the ambiguity can result in overestimates of

impervious surface in areas where both pervious and impervi-

ous substrates are exposed and illuminated. This is a potentially

serious problem in arid and semiarid climates because

broadband sensors cannot generally distinguish between

pervious and impervious surfaces on the basis of reflectance

alone.

We propose here that vegetation fraction could provide

constraints on the amount and spatial distribution of pervious

surface thereby avoiding the assumptions inherent in reflec-

tance-based estimates of impervious surface. If moderate

resolution surface permeability constraints are needed for

physical models a far more realistic strategy would be to use

vegetation fraction as a proxy for fractional pervious surface

rather than a binary classification of pervious and impervious.

Treating vegetation fraction as a proxy for permeable surface

distribution is admittedly ad hoc but it makes sense physically

because vegetation cannot thrive on impervious surfaces so the

presence of vegetation implies the presence of some amount of

underlying permeable surface. In arid and semiarid climates,

the presence of even low fractions of vegetation (above

detection threshold) implies the presence of a somewhat
permeable underlying surface. Although infiltration capacities

of permeable surfaces can vary appreciably, using the presence

of detectable vegetation as an indicator of permeable surface

can account for a wide variety of natural and built landscapes.

However, the fundamental ambiguity between permeable and

impermeable substrates still exists on unvegetated (Fv<detec-

tion threshold) surfaces. While urban impervious surfaces can

span a wide (and undiagnostic) range of reflectances on the

gray axis, soil reflectance can often be more uniform at

regional scales—provided moisture content is uniform. This

may provide a way to distinguish unvegetated soils with

consistent reflectance from a more diverse distribution of

impervious surfaces in the urban mosaic.

5.2. Canopy shadow and illuminated vegetation

When using vegetation fraction estimates as inputs to

physical models it is important to acknowledge the distinction

between the area of illuminated vegetation and total quantity of

vegetative matter. Vegetation fractions estimated from linear

mixture models correspond to areal fraction of illuminated

vegetation within the GIFOV—not vegetative biomass or leaf

area index. This is illustrated with the vegetation fraction image

of Central Park in New York shown in Fig. 12. At meter scales,



Fig. 12. Vegetation fraction distributions for closed canopy forest and grass in Central Park. Distributions of 2.8 m Quickbird vegetation fractions indicate the

fraction of illuminated vegetation in typical forest canopy and varying density grass cover. 100% illuminated vegetation (fraction=1.0) is calibrated to a well-

maintained section of the Bowling Green. In comparison, typical grass cover is equivalent to 60% to 85% illuminated vegetation while closed canopy forest has

median fractions in the 40% to 60% range.
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trees are imaged as combinations of illuminated leaves and

shadow with very small contributions from illuminated non-

photosynthetic vegetation (stems, branches, etc.). The results

from Central Park suggest that a typical deciduous tree crown

will be imaged as pixels with illuminated vegetation fractions

between 0.4 and 0.7 while the interstitial shadows between

crowns have vegetation fractions between 0 and 0.4 depending

on the depth of the shadow. At 30 m scales the canopy shadow

mixes with illuminated crowns to yield aggregate fractions of

0.5 to 0.6. Unvegetated surfaces have vegetation fractions well

under 0.2 at both scales. Poorly manicured grass shows

considerable fractions of soil substrate endmember and

typically has illuminated vegetation fractions between 0.4

and 0.9 depending on the health of the grass. In spite of this

complication, high resolution fractions are considerably more

informative than their moderate resolution equivalents because

the diversity of possible distinct mixtures is considerably

reduced by the finer spatial scale of the pixel. In other words

many more spatial combinations of soil, shade and illuminated

vegetation are possible within a 900 m2 than within a 7.8 m2

GIFOV, partly because the smaller GIFOVapproaches the sizes

of specific targets, such as a single tree. In terms of mapping

vegetation abundance and distribution in urban areas, the

bottom line is that Quickbird pixels are small enough to resolve
many of the individual components that comprise the vast

majority of the urban vegetation mosaic. Many physical

process models represent vegetation with volumetric or

biomass parameters. If consistent relationships between illu-

minated area and volume or biomass can be established and

quantified then it may be possible to convert illuminated

fraction to these parameters. Illuminated canopy fraction could

also be a valuable quantity for photosynthesis-based models

because it represents the fractional distribution of illuminated

leaves that are directly receiving the most solar energy thereby

influencing photosynthetic activity, transpiration and heat flux.

5.3. Applications to urban landscape management

Vegetation fractions derived from Landsat can be used to

supplement the New York City Parks Department’s street tree

census and other unit-based inventories of vegetation

resources. The census was first conducted in 1995–1996,

and is planned to be done at 10 year intervals. The census

itemized street trees by species, size, location and condition. It

is extremely labor intensive, taking 13 months to complete with

over 700 volunteers and Park staffs. Fig. 13 compares the mean

vegetation fraction percentage in 2002 to the density of street

trees counted in 1996 in each U.S. census tract, for each



Fig. 13. Mean vegetation fraction versus street tree density for 2216 census blocks in the five boroughs of New York City. Minimum mean vegetation fraction

increases with street tree density overall but there is considerable interborough variability in blocks with fewer street trees. This is expected as the street tree census

does not count trees on private property and other types of vegetation. The variations among the boroughs correspond to differences in lot size and types of

residential and commercial land use. Mean fractions for each borough are shown to the left of the symbols.
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borough in New York City. The plot excludes park areas, for

which no tree inventory exists. Street trees are just one aspect

of all vegetation in New York City, whereas vegetation fraction

measures all types of illuminated vegetation in a given area. As

a result, there is no direct correspondence between mean

vegetation fraction percentages and the density of street trees.

The plot shows clear differences between boroughs for the

relationship of mean vegetation fraction to the density of street

trees, which reflects the different patterns of urban develop-

ment between boroughs. For example, areas in Manhattan with

a given density of street trees has a much lower mean

vegetation fraction value than an area with the same density

of street trees in Staten Island. Manhattan is dominated by

tightly clustered tall buildings, causing shadowing which

would lower the estimated vegetation fraction in an area.

Staten Island is a borough that is suburban in character, with

low detached housing and buildings surrounded by lawns and

gardens, which is more amenable to measurement of vegetation

from space. Consequently, Staten Island has higher vegetation

fractions than areas in Manhattan with similar street tree

densities. Similarly, Queens and the Bronx are boroughs with

mixes of suburban and densely urban neighborhoods, whereas

Brooklyn is a primarily urban borough but unlike Manhattan

the pattern of development has resulted in mostly low

buildings. In general, the variability between the boroughs

reflects differences in the mix of land use types and the ratio of

urban infrastructure to green space. Comparisons to public data

such as the street tree census permits a rapid assessment of the

proportion of an area’s green resource that is comprised of

publicly managed assets, potentially useful information for

policy makers and government managers to use in planning.

Moderate resolution vegetation fraction estimates can

provide a valuable tool for urban and suburban forestry. Most

immediately, decision makers for urban areas can use Landsat
TM and ETM+ vegetation fraction estimates to rapidly assess

the state and distribution of urban vegetation across jurisdic-

tional boundaries, a valuable tool for land-use planning and

policy-making. While tree-by-tree inventories are useful for

daily maintenance and situation specific decision making (like

isolating blight and infestation) they are often limited by

jurisdictional boundaries, prohibiting landscape/ecosystem

scale management. From the perspective of environmental

management urban vegetation performs many functions that

improve urban quality of life. However, in situ mapping and

monitoring of urban vegetation at regular intervals can be

prohibitively expensive. We advocate a combined approach to

vegetation monitoring in which remotely sensed vegetation

fraction estimates are used as a periodic reconnaissance tool to

focus in situ efforts and assets.

Effective monitoring of the health and distribution of urban

vegetation can provide a number of benefits to urban residents.

Trees provide habitat for urban wildlife and curb storm water

runoff (Luley, 1998). Vegetation can also serve as sinks for

carbon dioxide, and play a significant role in environmental

quality and human health. Some estimates indicate that trees

may absorb over 30% of urban and industrial air pollution,

including carbon dioxide, ozone, and sulfur (Nowak et al.,

2002; Luley, 1998). The presence of trees on an urban block

can also reduce building energy needs for cooling and heating

and thus mitigate the Fheat island effect_ through shading

(Simpson, 2002) and increasing latent heat flux at the expense

of sensible heat. Under certain circumstances a block with only

20 trees on it can have its ground temperature lowered an

average of 2.5 -C and humidity increased 2% (Bach, 1972).

The 30+ year archive of TM and ETM+ imagery permits

historical mapping of the abundance and spatial distribution of

urban vegetation, allowing natural resource managers to make

informed decisions about maintenance, planting and preserva-
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tion. Maps of urban vegetation also serve as inputs to climate,

air quality and hydrologic models that can ultimately help

decision maker leverage ecosystem services to plan for and

create sustainable, livable cities.

Vegetation fraction estimates using Quickbird imagery also

show potential as a reconnaissance tool for managers. As Fig.

12 shows, fraction values can be used to differentiate between

closed canopy forest versus grass areas. These values could be

used to draw boundaries representing different vegetation

classes as management zones. Intermediate vegetation fraction

values not belonging clearly to closed canopy or grass would

identify transition zones between these cover types, which

require different management actions depending on whether

the goal is a closed canopy or an open space. As archives of

Quickbird imagery continue to build, fractions could be used to

measure the changes over time in the abundance and

distribution of these vegetation types.

6. Conclusions

Urban reflectance can be accurately represented with a three

component linear mixture model for both Landsat ETM+ and

Quickbird imagery in a wide variety of cities worldwide. The

strong linearity of the Substrate Vegetation Dark surface (SVD)

mixture model provides consistent estimates of illuminated

vegetation fraction that can be used to constrain physical

process models that require biophysical inputs related to

vegetation abundance. When Quickbird-derived 2.8 m esti-

mates of vegetation fraction are integrated to 30 m scales and

coregistered to Landsat-derived 30 m estimates the median

estimate agrees with the integrated fractions to within 5% for

fractions >0.2. The scatter in the relationship cannot be

explained with estimate error alone but is consistent with a

3% to 6% estimation error combined with a 17 m subpixel

registration ambiguity. The 3D endmember fraction space

obtained from ETM+ imagery corresponds to a ternary

distribution of reflectance properties corresponding to distinct

biophysical surface types. The SVD model is a reflectance

analog to Ridd’s V–I–S land cover model but acknowledges

the fact that permeable and impermeable surfaces cannot

generally be distinguished on the basis of broadband reflec-

tance alone. We therefore propose that vegetation fraction be

used as a proxy for permeable surface distribution to avoid the

common erroneous assumption that all nonvegetated surfaces

along the gray axis are completely impermeable. Comparison

of mean vegetation fractions to street tree counts in New York

City shows a consistent relationship between minimum fraction

and tree count. However, moderate and high resolution areal

estimates of vegetation fraction provide complementary infor-

mation because they image all illuminated vegetation, includ-

ing that not counted by the in situ street tree census.
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